Skip to main content

Advertisement

Log in

Bacterial Diversity of Terrestrial Crystalline Volcanic Rocks, Iceland

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria inhabiting crystalline rocks from two terrestrial Icelandic volcanic lava flows of similar age and from the same geographical region, but differing in porosity and mineralogy, were characterised. Microarray (PhyloChip) and clone library analysis of 16S rRNA genes revealed the presence of a diverse assemblage of bacteria in each lava flow. Both methods suggested a more diverse community at the Dómadalshraun site (rhyolitic/andesitic lava flow) than that present at the Hnausahraun site (basaltic lava flow). Proteobacteria dominated the clone library at the Dómadalshraun site, while Acidobacteria was the most abundant phylum in the Hnausahraun site. Although analysis of similarities of denaturing gradient gel electrophoresis profiles suggested a strong correlation of community structure with mineralogy, rock porosity may also play an important role in shaping the bacterial community in crystalline volcanic rocks. Clone sequences were most similar to uncultured microorganisms, mainly from soil environments. Of these, Antarctic soils and temperate rhizosphere soils were prominent, as were clones retrieved from Hawaiian and Andean volcanic soils. The novel diversity of these Icelandic microbial communities was supported by the finding that up to 46% of clones displayed <85% sequence identities to sequences currently deposited in the RDP database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  3. Bland W, Rolls D (2005) Weathering: an introduction to the scientific principles. Arnold, London

    Google Scholar 

  4. Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  PubMed  CAS  Google Scholar 

  5. Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci 104:299–304

    Article  PubMed  CAS  Google Scholar 

  6. Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58:3413–3416

    PubMed  CAS  Google Scholar 

  7. Brunauer S, Emmett P, Teller E (1938) Adsorption of gases in multimolar layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  8. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  9. Cockell CS, Olsson-Francis K, Herrera A, Kelly L, Thorsteinsson T, Marteinsson V (2009) Bacteria in weathered basaltic glass, Iceland. Geomicrobiology Journal 26:491–507

    Article  CAS  Google Scholar 

  10. Cockell CS, Olsson-Francis K, Herrera A, Meunier A (2009) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65

    Article  PubMed  CAS  Google Scholar 

  11. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747

    Article  PubMed  CAS  Google Scholar 

  12. DeSantis T, Brodie E, Moberg J, Zubieta I, Piceno Y, Andersen G (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecol 53:371–383

    Article  CAS  Google Scholar 

  13. Dessert C, Dupré B, Gaillardet J, Francois LM, Allegre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273

    Article  CAS  Google Scholar 

  14. Dunfield KE, King GM (2004) Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Appl Environ Microbiol 70:4242–4248

    Article  PubMed  CAS  Google Scholar 

  15. Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Sci 281:978–980

    Article  CAS  Google Scholar 

  16. Friedmann EI, Ocampo-Friedmann R (1985) Blue-green algae in arid cryptoendolithic habitats. Arch Hydrobiol 71:2

    Google Scholar 

  17. Furnes H, Muehlenbachs K (2003) Bioalteration recorded in ophiolitic pillow lavas. Ophiolites in Earth's History. Special Publication 201. Geological Society of America, London. p 2

  18. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  19. Gomez-Alvarez V, King GM, Nüsslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73

    Article  PubMed  CAS  Google Scholar 

  20. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  21. Hall K, Lindgren SB, Jackson P (2005) Rock albedo and monitoring of thermal conditions in respect of weathering: some expected and some unexpected results. Earth Surface Processes and Landforms 30:801–811

    Article  Google Scholar 

  22. Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbio Meth 70:1–12

    Article  CAS  Google Scholar 

  23. Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle AG (2009) A cryptoendolithic community in volcanic glass. Astrobiol 9:369–382

    Article  CAS  Google Scholar 

  24. Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Arp G, Dröse W, Thorsteinsson T, Tindle AG (2008) Bacterial colonization and weathering of terrestrial Obsidian in Iceland. Geomicrobiol J 25:25–37

    Article  CAS  Google Scholar 

  25. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  26. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry 40:2843–2853

    Article  CAS  Google Scholar 

  27. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  PubMed  CAS  Google Scholar 

  28. Kelly L, Cockell C, Piceno Y, Andersen G, Thorsteinsson T, Marteinsson V (2010) Bacterial diversity of weathered terrestrial Icelandic volcanic glasses. Microbial Ecol 60:740–752

    Article  Google Scholar 

  29. King GM (2003) Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol 69:4067–4075

    Article  PubMed  CAS  Google Scholar 

  30. Le Bas MJ, Le Maitre RW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Mineralogy and Petrology 46:1–22

    Article  Google Scholar 

  31. Lysnes K, Thorseth IH, Steinsbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50:213–230

    Article  PubMed  CAS  Google Scholar 

  32. Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou J, Fisk MR, Giovannoni SJ (2008) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:231–242

    Article  PubMed  Google Scholar 

  33. Rastogi G, Osman S, Vaishampayan P, Andersen G, Stetler L, Sani R (2010) Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microbial Ecol 59:94–108

    Article  CAS  Google Scholar 

  34. Sagaram US, Deangelis KM, Trivedi P, Andersen GL, Lu S-E, Wang N (2009) Bacterial diversity analysis of huanglongbing pathogen-infected citrus using PhyloChips and 16S rDNA clone library sequencing. Appl Environ Microbiol 75:1566–1574

    Article  PubMed  CAS  Google Scholar 

  35. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–656

    Article  PubMed  CAS  Google Scholar 

  36. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  37. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92

    Article  PubMed  Google Scholar 

  38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  39. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    PubMed  CAS  Google Scholar 

  40. Shoji S, Nanzyo M, Dahlgren RA (1994) Volcanic ash soils: genesis, processes and utilization. Elsevier, Amsterdam

    Google Scholar 

  41. Smith J, Tow L, Stafford W, Cary C, Cowan D (2006) Bacterial diversity in three different antarctic cold desert mineral soils. Microbial Ecol 51:413–421

    Article  Google Scholar 

  42. Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  CAS  Google Scholar 

  43. Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen KSP (2001) Diversity of life in ocean floor basalt. Earth Planet Sc Lett 194:31–37

    Article  CAS  Google Scholar 

  44. Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Andersen G, Piceno Y, Bourtzis K (2008) Prokaryotic community profiles at different operational stages of a Greek solar saltern. Research in Microbiology 159:609–627

    Article  PubMed  Google Scholar 

  45. Walker JJ, Pace NR (2007) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504

    Article  PubMed  CAS  Google Scholar 

  46. Weber CF, King GM (2010) Distribution and diversity of carbon monoxide-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environ Microbiol 12:1855–1867

    Article  PubMed  CAS  Google Scholar 

  47. Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68:4843–4858

    Article  CAS  Google Scholar 

  48. Yergeau E, Schoondermark-Stolk SA, Brodie EL, Dejean S, DeSantis TZ, Goncalves O, Piceno YM, Andersen GL, Kowalchuk GA (2008) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  PubMed  Google Scholar 

  49. Yergeau E, Schoondermark-Stolk SA, Brodie EL, Dejean S, DeSantis TZ, Goncalves O, Piceno YM, Andersen GL, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible and supported by the Leverhulme Trust (project number F/00 269/N). We thank John Watson (Department of Earth Science, Open University, UK) for the XRF analyses and Stephen Summers (Geomicrobiology Group, Open University) for statistical advice. The authors are also grateful to Steve Blake and Steve Self (Earth and Environmental Sciences, Open University, UK) for helpful discussions and advice, and Mark Blaxter (School of Biological Sciences, University of Edinburgh, UK) for the sequencing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, L.C., Cockell, C.S., Herrera-Belaroussi, A. et al. Bacterial Diversity of Terrestrial Crystalline Volcanic Rocks, Iceland. Microb Ecol 62, 69–79 (2011). https://doi.org/10.1007/s00248-011-9864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9864-1

Keywords

Navigation