Skip to main content

Advertisement

Log in

Culturable and VBNC Vibrio cholerae: Interactions with Chironomid Egg Masses and Their Bacterial Population

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments. Recently, it was found that chironomid (nonbiting midges) egg masses serve as a reservoir for the cholera bacterium and that flying chironomid adults are possible windborne carriers of V. cholerae non-O1 non-O139. Chironomids are the most widely distributed insect in freshwater. Females deposit egg masses at the water's edge, and each egg mass contains eggs embedded in a gelatinous matrix. Hemagglutinin/protease, an extracellular enzyme of V. cholerae, was found to degrade chironomid egg masses and to prevent them from hatching. In a yearly survey, chironomid populations and the V. cholerae in their egg masses followed phenological succession and interaction of host–pathogen population dynamics. In this report, it is shown via FISH technique that most of the V. cholerae inhabiting the egg mass are in the viable but nonculturable (VBNC) state. The diversity of culturable bacteria from chironomid egg masses collected from two freshwater habitats was determined. In addition to V. cholerae, representatives of the following genera were isolated: Acinetobacter, Aeromonas, Klebsiella, Shewanella, Pseudomonas, Paracoccus, Exiguobacterium, and unidentified bacteria. Three important human pathogens, Aeromonasveronii, A. caviae, and A. hydrophila, were isolated from chironomid egg masses, indicating that chironomid egg masses may be a natural reservoir for pathogenic Aeromonas species in addition to V. cholerae. All isolates of V. cholerae were capable of degrading chironomid egg masses. This may help explain their host–pathogen relationship with chironomids. In contrast, almost none of the other bacteria that were isolated from the egg masses possessed this ability. Studying the interaction between chironomid egg masses, the bacteria inhabiting them, and V. cholerae could contribute to our understanding of the nature of the V. cholerae–egg mass interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abbott, SL, Cheung, WKW, Janda, JM (2003) The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes. J Clin Microbiol 41:2348–2357

    Article  PubMed  CAS  Google Scholar 

  2. Amann, R, Glockner, FO, Neef, A (1997) Modern methods in subsurface microbiology: in situ identification of microorganisms with nucleic acid probe. FEMS Microbiol Rev 20:191–200

    Article  CAS  Google Scholar 

  3. Armitage, P, Cranston, PS, Pinder, LCV (1995) The Chironomidae: The Biology and Ecology of Non-Biting Midges. Chapman and Hall, London, UK, p 572

    Google Scholar 

  4. Ashbolt, NJ, Ball, A, Dorsch, M, Turner, C, Cox, P, Chapman, A, Kirov, SM (1995) The identification and human health significance of environmental aeromonads. Water Sci Technol 31:263–269

    Article  Google Scholar 

  5. Banin, E, Israely, T, Kushmaro, A, Loya, Y, Orr, E, Rosenberg, E (2000) Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Appl Environ Microbiol 66:3031–3036

    Article  PubMed  CAS  Google Scholar 

  6. Bogosian, G, Bourneuf, EV (2001) A matter of bacterial life and death. EMBO Rep 2:770–774

    Article  PubMed  CAS  Google Scholar 

  7. Broza, M, Halpern, M (2001) Chironomids egg masses and Vibrio cholerae. Nature 412:40

    Article  PubMed  CAS  Google Scholar 

  8. Broza, M, Gancz, H, Halpern, M, Kashi, Y (2005) Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7:576–585

    Article  PubMed  Google Scholar 

  9. Chowdhury, MAR, Yamanaka, H, Miyoshi, SI, Shinoda, S (1990) Ecology and seasonal distribution of Vibrio parahaemolyticus in aquatic environments of a temperate region. FEMS Microb Ecol 74:1–10

    Article  Google Scholar 

  10. Colwell, RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031

    Article  PubMed  CAS  Google Scholar 

  11. Colwell, RR (2000) Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125

    Article  PubMed  CAS  Google Scholar 

  12. Colwell, RR, Brayton, PR, Grimes, DJ, Roszak, DB, Huq, SA, Palmer, LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. BioTechnol 3:817–820

    Article  Google Scholar 

  13. Colwell, R, Huq, A (2001) Marine ecosystems and cholera. Hydrobiologia 460:141–145

    Article  Google Scholar 

  14. Felske, A, Rheims, H, Wolterink, A, Stackebrandt, E, Akkermans, AD (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiol 143:2983–2989

    Article  CAS  Google Scholar 

  15. Figueras, MJ, Suarez-Franquet, A, Chacon, MR, Soler, L, Navarro, M, Alejandre, C, Grasa, B, Martinez-Murcia, AJ, Guarro, J (2005) First record of the rare species Aeromonas culicicola from a drinking water supply. Appl Environ Microbiol 71:538–541

    Article  PubMed  CAS  Google Scholar 

  16. Halpern, M, Gancz, H, Broza, M. Kashi, Y (2003) Vibrio cholerae hemagglutinin/protease degrades chironomid egg masses. Appl Environ Microbiol 69:4200–4204

    Article  PubMed  CAS  Google Scholar 

  17. Halpern, M, Broza, YB, Mittler, S, Arakawa, E, Broza, M (2004) Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb Ecol 47:341–349

    Article  PubMed  CAS  Google Scholar 

  18. Halpern, M, Raats, D, Lavion, R. Mittler, S (2006) Dependent population dynamics between chironomids (non-biting midges) and Vibrio cholerae. FEMS Microb Ecol 55:98–104

    Article  CAS  Google Scholar 

  19. Holmes, P, Niccolls, NH Sartory, DP (1996) The ecology of mesophilic Aeromonas in the aquatic environment. In: Austin, B, Altwegg, M, Gosling, PJ, Joseph, S (Eds.) The Genus Aeromonas. Wiley, Chichester, pp 127–150

    Google Scholar 

  20. Huq, A, Small, EB, West, PA, Huq, MI, Rahman, R, Colwell, RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    PubMed  CAS  Google Scholar 

  21. Islam, MS, Drasar, BS, Sack, RB (1996) Ecology of Vibrio cholerae: role of aquatic flora and fauna. In: Drasar, BS, Forrest, BD (Eds.) Cholera and the Ecology of Vibrio cholerae. Chapman and Hall, London, UK, pp 187–227

    Google Scholar 

  22. Israely, T, Banin, E, Rosenberg, E (2001) Growth, differentiation and death of Vibrio shiloi in coral tissue as a function of seawater temperature. Aquat Microb Ecol 24:1–8

    Google Scholar 

  23. Lee, KH, Ruby, EG (1995) Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl Environ Microbiol 61:278–283

    PubMed  CAS  Google Scholar 

  24. Long, RA, Rowley, DC, Zamora, E, Liu, J, Bartlett, DH, Azam, F (2005) Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71:8531–8536

    Article  PubMed  CAS  Google Scholar 

  25. Munro, PM, Colwell, RR (1996) Fate of Vibrio cholerae O1 in seawater microcosms. Water Res. 30:47–50

    Article  CAS  Google Scholar 

  26. Nandi, B, Nandy, RK, Mukhopadhyay, S, Nair, GB, Shimada, T, Ghose, AC (2000) Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol 38:4145–4151

    PubMed  CAS  Google Scholar 

  27. Oliver, JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg, S (Ed.) Starvation in Bacteria. Plenum, New York, pp 239–272

    Google Scholar 

  28. Oliver, JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  29. Oliver, JD, Nilsson, L, Kjelleberg, S (1991) Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl Environ Microbiol 57:2640–2644

    PubMed  CAS  Google Scholar 

  30. Pernthaler, J, Glöckner, O, Unterholzner, S, Alfreider, A, Psenner, R, Amann, R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299–4306

    PubMed  CAS  Google Scholar 

  31. Pidiyar, V, Kaznowski, A, Narayan, NB, Patole, M, Shouche, YS (2002) Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus. Int J Syst Evol Microbiol 52:1723–1728

    Article  PubMed  CAS  Google Scholar 

  32. Pidiyar, VJ, Jangid, K, Patole, MS, Shouche, YS (2004) Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. Am J Trop Med Hyg 70:597–603

    PubMed  CAS  Google Scholar 

  33. Ramaiah, N, Ravel, J, Straube, WL, Hill, RT, Colwell, RR (2002) Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state. J Appl Microbiol 93:108–116

    Article  PubMed  CAS  Google Scholar 

  34. Richardson, JS, Kiffney, PM (2000) Responses of a macroinvertebrate community from a pristine, southern British Columbia, Canada, stream to metals in experimental mesocosms. Environ Toxicol Chem 19:736–743

    Article  CAS  Google Scholar 

  35. Sack, DA, Sack, RB, Nair, GB, Siddique, AK (2004) Cholera. Lancet 363:223–233

    Article  PubMed  CAS  Google Scholar 

  36. Shimada, T, Arakawa, E, Itoh, K, Okitsu, T, Matsushima, A, Asai, Y, Yamai, S, Nakazato, T, Nair, GB, Albert, MJ, Takeda, Y (1994) Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 28:175–178

    Article  Google Scholar 

  37. Winner, RW, Bossel, MW, Farrel, MP (1980) Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Can J Fish Aquat Sci 37:647–655

    CAS  Google Scholar 

  38. Ziemke, F, Hofle, MG, Lalucat, J, Rossello-Mora, R (1998) Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1:179–186

    Article  Google Scholar 

Download references

Acknowledgment

We thank A. Barbul for his technical assistance with the Confocal Fluorescent microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malka Halpern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpern, M., Landsberg, O., Raats, D. et al. Culturable and VBNC Vibrio cholerae: Interactions with Chironomid Egg Masses and Their Bacterial Population. Microb Ecol 53, 285–293 (2007). https://doi.org/10.1007/s00248-006-9094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9094-0

Keywords

Navigation