Skip to main content

Advertisement

Log in

Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A bacterial phylogenetic survey of three environmentally distinct Antarctic Dry Valley soil biotopes showed a high proportion of so-called “uncultured” phylotypes, with a relatively low diversity of identifiable phylotypes. Cyanobacterial phylotypic signals were restricted to the high-altitude sample, whereas many of the identifiable phylotypes, such as the members of the Actinobacteria, were found at all sample sites. Although the presence of Cyanobacteria and Actinobacteria is consistent with previous culture-dependent studies of microbial diversity in Antarctic Dry Valley mineral soils, many phylotypes identified by 16S rDNA analysis were of groups that have not hitherto been cultured from Antarctic soils. The general belief that such “extreme” environments harbor a relatively low species diversity was supported by the calculation of diversity indices. The detection of a substantial number of uncultured bacterial phylotypes showing low BLAST identities (<95%) suggests that Antarctic Dry Valley mineral soils harbor a pool of novel psychrotrophic taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Altschul, SF, Gish, W, Miller, W, Miers, EW, Lipman, DJ (1990) Basic logical alignment search tool. J Mol Biol 215: 403–410

    Article  PubMed  CAS  Google Scholar 

  2. Amann, RI, Ludwig, W, Schleifer, K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  3. Barns, SM, Takala, SL, Kuske, CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65: 1731–1737

    PubMed  CAS  Google Scholar 

  4. Basilio, A, Conzáles, I, Vicente, MF, Gorrochategui, J, Cabello, A, Gonzáles, A, Genilloud, O (2003) Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity. J Appl Microbiol 95: 814–823

    Article  PubMed  CAS  Google Scholar 

  5. Bunch, AW (1998) Biotransformation of nitriles by Rhodococci. Antonie Van Leeuwenhoek 74: 89–97

    Article  PubMed  CAS  Google Scholar 

  6. Cameron, R, Morelli, FA, Johnson, RM (1972) Bacterial species in soil and air of the Antarctic continent. Antarct J 187–189

  7. Cameron, RE, King, J, David, C (1968) Soil microbial and ecological studies in Southern Victoria Land. Antarct J 121–123

  8. Cameron, RE, King, J, David, CN (1970) Microbial ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica. In: Holdgate, MW, (Ed.) Antarctic Ecology, 1. Academic Press, London, pp 702–716

    Google Scholar 

  9. Chandler, DP, Fredrickson, JK, Brockman, FJ (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6: 475–482

    Article  PubMed  CAS  Google Scholar 

  10. Christner, BC, Kvitko, BH, Reeve, JN (2003) Molecular identification of bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177–183

    PubMed  CAS  Google Scholar 

  11. Cockell, CS, Stokes, MD (2004) Widespread colonization by polar hypolyths. Nature 431: 414

    Article  PubMed  CAS  Google Scholar 

  12. Cowan, DA, Russell, NJ, Mamais, A, Sheppard, DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6: 431–436

    Article  PubMed  CAS  Google Scholar 

  13. de la Torre, JR, Goebel, BM, Friedmann, EI, Pace, NR (2003) Microbial diversity of cryptoendolythic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69: 3858–3867

    Article  PubMed  CAS  Google Scholar 

  14. de los Ríos, A, Ascaso, C, Wierzchos, J, Fernández-Valiente, E, Quesada, A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo ice shelf, Antarctica. Appl Environ Microbiol 70: 569–580

    Article  PubMed  CAS  Google Scholar 

  15. Dunbar, J, Barns, SM, Ticknor, LO, Kuske, CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68: 3035–3045

    Article  PubMed  CAS  Google Scholar 

  16. Dunbar, J, Ticknor, LO, Kuske, CR (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66: 2943–2950

    Article  PubMed  CAS  Google Scholar 

  17. Farelly, V, Rainey, F, Stackebrandt, E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61: 2798–2801

    PubMed  Google Scholar 

  18. Folch, J, Lees, M, Stanley, GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 266: 497–509

    Google Scholar 

  19. Friedmann, EI (1993) Antarctic Microbiology. Wiley-Liss. New York, pp 634

    Google Scholar 

  20. Hoeft, SE, Kulp, TR, Stolz, JF, Hollibaugh, JT, Oremland, RS (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with mono lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70: 2741–2747

    Article  PubMed  CAS  Google Scholar 

  21. Holmes, AJ, Bowyer, J, Holley, MP, O'Donoghue, M, Montgomery, MR, Gillings, MR (2000) Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33: 111–120

    Article  PubMed  CAS  Google Scholar 

  22. Horne, AJ (1972) The ecology of nitrogen fixation on Signy Island, South Orkney Islands. Br Antarct Surv Bull 27: 1–18

    Google Scholar 

  23. Horowitz, NH, Cameron, RE, Hubbard, JS (1972) Microbiology of the Dry Valleys of Antarctica. Antarct Sci 176: 242–245

    Google Scholar 

  24. Hughes, JB, Hellmann, JJ, Ricketts, TH, Bohannan, BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67: 4399–4406

    Article  PubMed  CAS  Google Scholar 

  25. Janssen, PH, Yates, PS, Grinton, BE, Taylor, PM, Sait, M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the Divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68: 2391–2396

    Article  PubMed  CAS  Google Scholar 

  26. Jorgensen, F, Hansen, OC, Stougaard, P (2001) High-efficiency synthesis of oligosaccharides with a truncated beta-galactosidase from Bifidobacterium bifidum. Appl Microbiol Biotechnol 57: 647–652

    Article  PubMed  CAS  Google Scholar 

  27. Kuske, CR, Barns, SM, Busch, JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63: 3614–3621

    PubMed  CAS  Google Scholar 

  28. Lipson, DA, Schmidt, SK (2004) Seasonal changes in an Alpine soil bacterial community in the Colorado Rocky mountains. Appl Environ Microbiol 70: 2867–2879

    Article  PubMed  CAS  Google Scholar 

  29. Maidak, BL, Cole, JR, Lilburn, TG, Parker, CT, Saxman, PR, Stredwick, JM, Garrity, GM, Li, B, Olsen, GJ, Pramanik, S, Schmidt, TM, Tiedje, JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28: 173–174

    Article  PubMed  CAS  Google Scholar 

  30. Martin-Laurent, F, Philippot, L, Hallet, S, Chaussod, R, Germon, JC, Soulas, G, Catroux, G, (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67: 2354–2359

    Article  PubMed  CAS  Google Scholar 

  31. McDougald, D, Rice, SA, Weichart, D, Kjelleberg, S (1998) Nonculturability: adaptation or debilitation. FEMS Microbiol Ecol 25: 1–9

    Article  CAS  Google Scholar 

  32. McKay, CP (1993) Relevance of Antarctic microbial ecosystems to exobiology. In: Freidmann, IE (Ed.) Antarctic Microbiology. Wiley-Liss, New York, pp 603–614

    Google Scholar 

  33. Miller, DN, Bryant, JE, Madsen, EL, Ghiorse, WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65: 4715–4724

    PubMed  CAS  Google Scholar 

  34. Miller, SR, Bebout, BM (2004) Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appl Environ Microbiol 70: 736–744

    Article  PubMed  CAS  Google Scholar 

  35. Muyzer, G, de Waal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  36. Nienow, JA, Friedmann, EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann, EI (Ed.) Antarctic Microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  37. Ovreås, L, Daae, FL, Torsvik, V, Rodriguez-Valera, F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microbiol Ecol 46: 291–301

    Article  CAS  Google Scholar 

  38. Pannewitz, S, Schlensog, M, Green, TG, Sancho, LG, Shroeter, B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135: 30–38

    PubMed  Google Scholar 

  39. Parker, BC, Wharton, RA (1985) Physiological ecology of blue green algal mats (modern stromatolites) in Antarctic oasis lakes. Arch Hydrobiol Alg Stud 38/39: 331–348

    Google Scholar 

  40. Priscu, JC, Fritsen, CH, Adams, EE, Giovannoni, SJ, Paerl, HW, McKay, CP, Doran, PT, Gordon, DA, Lanoil, BD, Pinckney, JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095–2098

    Article  PubMed  CAS  Google Scholar 

  41. Reysenbach, A-L, Pace, NR (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb, FT, Place, AR (Eds.) Archaea: A Laboratory Manual—Thermophiles. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 101–107

    Google Scholar 

  42. Sinigalliano, CD, Kuhn, DN, Jones, RD, Guerrero, MA (2001) In situ reverse transcription to detect the cbbL gene and visualize RuBisCO in chemoautotrophic nitrifying bacteria. Lett Appl Microbiol 32: 388–393

    Article  PubMed  CAS  Google Scholar 

  43. Staley, JT, Gosink, JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53: 189–215

    Article  PubMed  CAS  Google Scholar 

  44. Stevenson, BS, Eichorst, SA, Wertz, JT, Schmidt, TM, Breznak, JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70: 4748–4755

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki, MT, Giovannoni, SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625–630

    PubMed  CAS  Google Scholar 

  46. Taton, A, Grubisic, S, Brambilla, E, De Wit, R, Wilmotte, A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69: 5157–5169

    Article  PubMed  CAS  Google Scholar 

  47. Torsvik, V, Goksøyr, J, Daae, FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782–787

    PubMed  CAS  Google Scholar 

  48. Vincent, WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  49. Vincent, WF, Howard-Williams, C, Broady, PA (1993) Microbial communities and processes in Antarctic flowing waters. In: Friedmann, EI (Ed.) Antarctic Microbiology. Wiley-Liss, Inc. New York, pp 543–569

    Google Scholar 

  50. Vishniac, HS (1993) The microbiology of Antarctic soils. In: Friedmann, HS (Ed.) Antarctic Microbiology. Wiley-Liss, New York, pp 297–341

    Google Scholar 

  51. Wakefield, D (1971) Mummified seals of southern Victoria Land. Antarc J U S 6: 210–211

    Google Scholar 

  52. Watanabe, K, Teramoto, M, Futamata, H, Harayama, S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64: 4396–4402

    PubMed  CAS  Google Scholar 

  53. Waterbury, JB, Watson, SW, Guillard, RRL, Brand, LE (1979) Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277: 293–294

    Article  Google Scholar 

  54. Wynn-Williams, DD (1990) Ecological aspects of Antarctic microbiology. In: Marshall KC (Ed.) Advances in Microbial Ecology, Vol. 2. Plenum Publishing, pp 71–146

Download references

Acknowledgments

This work was performed under the auspices of the Waikato University Antarctic Terrestrial Biology program. The authors wish to thank the University of Waikato, Antarctica New Zealand and the National Research Foundation of South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.J., Tow, L.A., Stafford, W. et al. Bacterial Diversity in Three Different Antarctic Cold Desert Mineral Soils. Microb Ecol 51, 413–421 (2006). https://doi.org/10.1007/s00248-006-9022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9022-3

Keywords

Navigation