, Volume 35, Issue 12, pp 1199-1207
Date: 01 Sep 2005

Quantitative analysis of the corpus callosum in children with cerebral palsy and developmental delay: correlation with cerebral white matter volume

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background: The direct quantitative correlation between thickness of the corpus callosum and volume of cerebral white matter in children with cerebral palsy and developmental delay has not been demonstrated. Objective: This study was conducted to quantitatively correlate the thickness of the corpus callosum with the volume of cerebral white matter in children with cerebral palsy and developmental delay. Material and methods: A clinical database of 70 children with cerebral palsy and developmental delay was established with children between the ages of 1 and 5 years. These children also demonstrated abnormal periventricular T2 hyperintensities associated with and without ventriculomegaly. Mid-sagittal T1-weighted images were used to measure the thickness (genu, mid-body, and splenium) and length of the corpus callosum. Volumes of interest were digitized based on gray-scale densities to define the hemispheric cerebral white matter on axial T2-weighted and FLAIR images. The thickness of the mid-body of the corpus callosum was correlated with cerebral white matter volume. Subgroup analysis was also performed to examine the relationship of this correlation with both gestational age and neuromotor outcome. Statistical analysis was performed using analysis of variance and Pearson correlation coefficients. Results: There was a positive correlation between the thickness of the mid-body of the corpus callosum and the volume of cerebral white matter across all children studied (R=0.665, P=0.0001). This correlation was not dependent on gestational age. The thickness of the mid-body of the corpus callosum was decreased in the spastic diplegia group compared to the two other groups (hypotonia and developmental delay only; P<0.0001). Within each neuromotor subgroup, there was a positive correlation between thickness of the mid-body of the corpus callosum and volume of the cerebral white matter. Conclusion: The thickness of the mid-body of the corpus callosum positively correlates with volume of cerebral white matter in children with cerebral palsy and developmental delay, regardless of gestational age or neuromotor outcome. Assessment of the thickness of the corpus callosum might help in estimating the extent of the loss of volume of cerebral white matter in children with a broad spectrum of periventricular white matter injury.