, Volume 59, Issue 1, pp 99-146

Optimal Compensation with Hidden Action and Lump-Sum Payment in a Continuous-Time Model

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We consider a problem of finding optimal contracts in continuous time, when the agent’s actions are unobservable by the principal, who pays the agent with a one-time payoff at the end of the contract. We fully solve the case of quadratic cost and separable utility, for general utility functions. The optimal contract is, in general, a nonlinear function of the final outcome only, while in the previously solved cases, for exponential and linear utility functions, the optimal contract is linear in the final output value. In a specific example we compute, the first-best principal’s utility is infinite, while it becomes finite with hidden action, which is increasing in value of the output. In the second part of the paper we formulate a general mathematical theory for the problem. We apply the stochastic maximum principle to give necessary conditions for optimal contracts. Sufficient conditions are hard to establish, but we suggest a way to check sufficiency using non-convex optimization.