Applied Mathematics and Optimization

, Volume 57, Issue 1, pp 69–97

Characterization of Two-Scale Gradient Young Measures and Application to Homogenization

  • Jean-François Babadjian
  • Margarida Baía
  • Pedro M. Santos
Article

DOI: 10.1007/s00245-007-9012-y

Cite this article as:
Babadjian, JF., Baía, M. & Santos, P.M. Appl Math Optim (2008) 57: 69. doi:10.1007/s00245-007-9012-y

Abstract

This work is devoted to the study of two-scale gradient Young measures naturally arising in nonlinear elasticity homogenization problems. Precisely, a characterization of this class of measures is derived and an integral representation formula for homogenized energies, whose integrands satisfy very weak regularity assumptions, is obtained in terms of two-scale gradient Young measures.

Keywords

Young measures Homogenization Γ-convergence Two-scale convergence 

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jean-François Babadjian
    • 1
  • Margarida Baía
    • 2
  • Pedro M. Santos
    • 2
  1. 1.SISSATriesteItaly
  2. 2.Instituto Superior TecnicoLisbonPortugal

Personalised recommendations