, Volume 64, Issue 2, pp 301-315
Date: 15 Nov 2012

Effects of Waterborne Chronic Copper Exposure on Hepatic Lipid Metabolism and Metal-Element Composition in Synechogobius hasta

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The present study was conducted to determine hepatic lipid metabolism and metal-element composition in Synechogobius hasta exposed to waterborne chronic copper (Cu) concentrations of control, 57, and 118 μg Cu/l, respectively, for 30 days. Growth decreased, but hepatosomatic index, viscerosomatic index, and hepatic lipid content increased with increasing waterborne Cu levels. Staining with oil red O showed extensive steatosis in liver of Cu-exposed fish. Cu exposure increased hepatic 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, and malic enzyme activities, whereas fatty acid synthetase, isocitrate dehydrogenase, and carnitine palmitoyltransferases I activities remained unaffected. Cu, zinc, iron, and manganese contents were also changed in several tissues (gill, liver, spleen, gastrointestinal tract, and muscle) in a tissue-, dose-, and time-dependent manner. This was the first study to examine the effects of waterborne Cu exposure on several enzymatic activities mediating hepatic lipogenesis and lipolysis in fish as well as to show that waterborne Cu exposure could enhance the metabolism of lipid synthesis and consequently induce the increase of hepatic lipid deposition in S. hasta.