Skip to main content
Log in

Application of Zeeman Graphite Furnace Atomic Absorption Spectrometry with High-Frequency Modulation Polarization for the Direct Determination of Aluminum, Beryllium, Cadmium, Chromium, Mercury, Manganese, Nickel, Lead, and Thallium in Human Blood

Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH4NO3 was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO3)2 as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L−1 for Al, 0.08 μg L−1 for Be, 0.10 μg L−1 for Cd, 2.2 μg L−1 for Cr, 7 μg L−1 for Hg, 0.4 μg L−1 for Mn, 2.3 μg L−1 for Ni, 3.4 μg L−1 for Pb, and 0.5 μg L−1 for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACGIH (2004) TLVs and BEIs based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH, Cincinnati

    Google Scholar 

  • Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N et al (2008) Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract 80:280–288

    Article  CAS  Google Scholar 

  • Amore F (1974) Determination of cadmium, lead, thallium, and nickel in blood by atomic absorption spectrometry. Anal Chem 46:1597–1599

    Article  CAS  Google Scholar 

  • Bocca B, Alimonti A, Petrucci F, Violante N, Sancesario G, Forte G et al (2004) Quantification of trace elements by sector field inductively coupled plasma mass spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochim Acta Part B At Spectrosc 59:559–566

    Article  Google Scholar 

  • Bocca B, Forte G, Petrucci F, Senofonte O, Violante N, Alimonti A (2005) Development of methods for the quantification of essential and toxic elements in human biomonitoring. Ann Ist Super Sanità 41:165–170

    CAS  Google Scholar 

  • Burguera JL, Burguera M, Rondon C (2002) An on-line flow-injection microwave-assisted mineralization and a precipitation/dissolution system for the determination of molybdenum in blood serum and whole blood by electrothermal atomic absorption spectrometry. Talanta 58:1167–1175

    Article  CAS  Google Scholar 

  • Caldwell KL, Mortensen ME, Jones RL, Caudill SP, Osterloh JD (2009) Total blood mercury concentrations in the U.S. population: 1999–2006. Int J Hyg Environ Health 212:588–598

    Article  CAS  Google Scholar 

  • D’Ilio S, Violante N, Di Gregorio M, Senofonte O, Petrucci F (2006) Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system. Anal Chim Acta 579:202–208

    Article  Google Scholar 

  • Ellenhorn MJ, Barceloux DG (1988) Medical toxicology: diagnosis and treatment of human poisoning. Elsevier Science, New York

    Google Scholar 

  • Fong BM, Tak SS, Lee JS, Tam S (2007) Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol 31:281–287

    CAS  Google Scholar 

  • Ganeev AA (1996) Zeeman modulation polarization spectrometry as a version of atomic-absorption analysis: Potential and limitations. J Anal Chem 51(8):788–796

    CAS  Google Scholar 

  • Ganeev AA, Sholupov SE, Pupyshev AA, Bolshakov AA, Pogarev SE (2011) Atomic absorption spectral analysis. Manual. Lan, Saint Petersburg

  • Goreti M, Vale R, Welz B (2002) Spectral and non-spectral interferences in the determination of thallium in environmental materials using electrothermal atomization and vaporization techniques: a case study. Spectrochim Acta Part B At Spectrosc 57:1821–1834

    Article  Google Scholar 

  • Goulle J-P, Mahieu L, Castermant J, Neveu N, Bonneau L, Laine G et al (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair reference values. Forensic Sci Int 153:39–44

    Article  CAS  Google Scholar 

  • Heitland P, Köster HD (2006) Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP–MS. J Trace Elem Med Biol 20:253–262

    Article  CAS  Google Scholar 

  • Hsiang M-C, Sung Y-H, Huang S-D (2004) Direct and simultaneous determination of arsenic, manganese, cobalt and nickel in urine with a multielement graphite furnace atomic absorption spectrometer. Talanta 62:791–799

    Article  CAS  Google Scholar 

  • Hsieh H-F, Chang W-S, Hsieh Y-K, Wang C-F (2011) Using dried-droplet laser ablation inductively coupled plasma mass spectrometry to quantify multiple elements in whole blood. Anal Chim Acta 699:6–10

    Article  CAS  Google Scholar 

  • Hynek D, Prasek J, Pikula J, Adam V, Hajkova P, Krejcova L et al (2011) Electrochemical analysis of lead toxicosis in vultures. Int J Electrochem Sci 6:5980–6010

    CAS  Google Scholar 

  • Isidorov VA (1999) Introduction into the chemical ecotoxicology. Khimisdat, Saint Petersburg

    Google Scholar 

  • Ivanenko NB, Ivanenko AA, Nosova EB, Solovyev ND (2010) Determination of toxic and background mercury content in blood by graphite furnace atomic absorption spectrometry with Zeeman high-frequency polarization modulation background correction. Vestn St Peter U Fiz Kh 4:97–104

    Google Scholar 

  • Ivanenko NB, Ganeev AA, Solovyev ND, Moskvin LN (2011a) Determination of trace elements in biological fluids. J Anal Chem 66(9):784–799

    Article  CAS  Google Scholar 

  • Ivanenko NB, Ivanenko AA, Nosova EB, Solovyev ND (2011b) Blood beryllium and nickel determination by graphite furnace atomic absorption spectrometry with Zeeman high-frequency polarization modulation background correction. Vestn St Peter U Fiz Kh 3:96–102

    Google Scholar 

  • Ivanenko AA, Ivanenko NB, Solovyev ND, Blazhennikova IV (2011c) Analysis of electro welders’ blood for Mn, Cr and Ni content by graphite furnace atomic absorption spectrometry with Zeeman background correction. Vop Bio Med Pharm Kh 2:41–46

    Google Scholar 

  • Kabirov KK, Kapetanovic IM, Lyubimov AV (2008) Direct determination of selenium in rat blood plasma by Zeeman atomic absorption spectrometry. Chem Biol Interact 171:152–158

    Article  CAS  Google Scholar 

  • Kaletina NI (ed) (2008) Toxicological chemistry. Metabolism and analysis of toxic substances. GEOTAR-Media, Moscow

    Google Scholar 

  • Kummrow F, Silva FF, Kuno R, Souza AL, Oliveira PV (2008) Biomonitoring method for the simultaneous determination of cadmium and lead in whole blood by electrothermal atomic absorption spectrometry for assessment of environmental exposure. Talanta 75:246–252

    Article  CAS  Google Scholar 

  • Magalhães CG, Lelis KLA, Rocha CA, Da Silva JBB (2002) Direct determination of aluminium in serum and urine by electrothermal atomic absorption spectrometry using ruthenium as permanent modifier. Anal Chim Acta 464:323–330

    Article  Google Scholar 

  • Memon A, Kazi TG, Afridi HI, Jamali MK, Arain MB, Jalbani N et al (2007) Evaluation of zinc status in whole blood and scalp hair of female cancer patients. Clin Chim Acta 379:66–70

    Article  CAS  Google Scholar 

  • Mendiola J, Moreno JM, Roca M, Vergara-Juárez N, Martínez-García MJ, García-Sánchez A et al (2011) Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: A pilot study. Environ Health 10:6

    Article  CAS  Google Scholar 

  • Michalke B, Halbach S, Nischwitz V (2009) JEM Spotlight: Metal speciation related to neurotoxicity in humans. J Environ Monit 11:939–954

    Article  CAS  Google Scholar 

  • Moreira FR, Mello MG, Campos RC (2007) Different platform and tube geometries and atomization temperatures in graphite furnace atomic absorption spectrometry: Cadmium determination in whole blood as a case study. Spectrochim Acta Part B At Spectrosc 62:1273–1277

    Article  Google Scholar 

  • Nixon DE, Neubauer KR, Eckdahl SJ, Butz JA, Burritt MF (2004) Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine. Spectrochim Acta Part B At Spectrosc 59:1377–1387

    Article  Google Scholar 

  • Ortner HM, Bulska E, Rohr U, Schlemmer G, Weinbruch S, Welz B (2002) Modifiers and coatings in graphite furnace atomic absorption spectrometry—Mechanisms of action (a tutorial review). Spectrochim Acta Part B At Spectrosc 57:1835–1853

    Article  Google Scholar 

  • Paquette V, Larivière P, Cormier D, Truchon G, Zayed J, Tra HV (2010) Development and validation of analytical methods for ultra-trace beryllium in biological matrices. J Anal Toxicol 34(9):562–570

    CAS  Google Scholar 

  • Peter AL, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31(4):493–501

    Article  CAS  Google Scholar 

  • Pineau A, Fauconneau B, Rafael M, Vialtefont A, Guillard O (2002) Determination of lead in whole blood: Comparison of the LeadCare blood lead testing system with Zeeman longitudinal electrothermal atomic absorption spectrometry. J Trace Elem Med Biol 16:113–117

    Article  CAS  Google Scholar 

  • Pleteneva TV (ed) (2008) Toxicological chemistry. GEOTAR-Media, Moscow

    Google Scholar 

  • Pupyshev AA (2009) Atomic absorption spectral analysis. Tekhnosfera, Moscow

    Google Scholar 

  • Qing Y, Smeyers-Verbeke J (1991) Effectiveness of palladium matrix modification for the determination of thallium by graphite furnace atomic absorption spectrometry. Clin Chim Acta 204:23–35

    Article  Google Scholar 

  • Rahil-Khazen R, Henriksen H, Bolann BJ, Ulvik RJ (2000) Validation of inductively coupled plasma atomic emission spectrometry technique (ICP-AES) for multi-element analysis of trace elements in human serum. Scand J Clin Lab Invest 60:677–686

    Article  CAS  Google Scholar 

  • Rezaei B, Meghdadi S, Majidi N (2007) Preconcentration of thallium(III) with 2,6-bis(N-phenyl carbamoyl) pyridine on microcrystalline naphthalene prior to its trace determination in human serum spectrophotometrically. Spectrochim Acta A Mol Biomol Spectrosc 67:92–97

    Article  CAS  Google Scholar 

  • Sholupov SE, Ganeev AA (1995) Zeeman atomic-absorption spectrometry using high frequency modulated light polarization. Spectrochim Acta Part B At Spectrosc 50:1227–1236

    Article  Google Scholar 

  • Slavin W, Manning DC, Carnrick GR (1981) The stabilized temperature platform furnace. Atom Spectr 2:137–145

    CAS  Google Scholar 

  • Solovyev ND, Ivanenko NB, Ivanenko AA (2011) Whole blood thallium determination by GFAAS with high frequency modulation polarization Zeeman effect background correction. Biol Trace Elem Res 143:591–599

    Article  CAS  Google Scholar 

  • Stephan CH, Fournier M, Brousseau P, Sauvé S (2008) Graphite furnace atomic absorption spectrometry as a routine method for the quantification of beryllium in blood and serum. Chem Cent J 2:14

    Article  Google Scholar 

  • Tits NU (ed) (1997) Encyclopedia of clinical laboratory tests. Labinform, Moscow

    Google Scholar 

  • Tsalev DL, Lampugnani L, Georgieva R, Chakarova KK, Petrov II Jr (2002) Electrothermal atomic absorption spectrometric determination of cadmium and lead with stabilized phosphate deposited on permanently modified platforms. Talanta 58:331–340

    Article  CAS  Google Scholar 

  • Van Cauwenbergh R, Robberecht H, Van Vlaslaer V, De Smet A, Emonds MP, Hermans N (2007) Plasma selenium levels in healthy blood bank donors in the central-eastern part of Belgium. J Trace Elem Med Biol 21:225–233

    Article  Google Scholar 

  • Viitak A, Volynsky AB (2006) Simple procedure for the determination of Cd, Pb, As and Se in biological samples by electrothermal atomic absorptionspectrometry using colloidal Pd modifier. Talanta 70:890–895

    Article  CAS  Google Scholar 

  • Welz B, Sperling M (1999) Atomic absorption spectrometry, 3rd edn. VCH, Weinheim

    Google Scholar 

  • Wolkin A, Hunt D, Martin C, Caldwell KL, McGeehin MA (2012) Blood mercury levels among fish consumers residing in areas with high environmental burden. Chemosphere 86:967–971

    Article  CAS  Google Scholar 

  • World Health Organization/International Program on Chemical Safety (1990) Environmental health criteria 106: Beryllium. WHO/IPCS, Geneva

    Google Scholar 

  • World Health Organization/International Program on Chemical Safety (1991) Environmental health criteria 118: Inorganic mercury. WHO/IPCS, Geneva

    Google Scholar 

  • World Health Organization/International Program on Chemical Safety (1993) Environmental health criteria 155: biomarkers and risk assessment: concepts and principles. WHO/IPCS, Geneva

    Google Scholar 

  • World Health Organization/International Program on Chemical Safety (1995) Environmental health criteria 165: inorganic lead. WHO, IPCS, Geneva

    Google Scholar 

  • Zanao RA, Barbosa F Jr, Souza SS, Krug FJ, Abdalla AL (2002) Direct determination of selenium in whole blood by electrothermal atomic absorption spectrometry using W-Rh-coated platform and co-injection of Rh as thermal stabilizer. Spectrochim Acta Part B At Spectrosc 57:291–301

    Article  Google Scholar 

  • Zeneli L, Daci N, Paçarizia H, Daci-Ajvazi M (2011) Impact of environmental pollution on human health of the population which lives nearby Kosovo thermopower plants. Indoor Built Environ 20:479–482

    Article  CAS  Google Scholar 

  • Zhoua Y, Zanao RA, Barbosa F Jr, Parsonsa PJ, Krug FJ (2002) Investigations of a W-Rh permanent modifier for the determination of Pb in blood by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc 57(8):1291–1300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay D. Solovyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanenko, N.B., Solovyev, N.D., Ivanenko, A.A. et al. Application of Zeeman Graphite Furnace Atomic Absorption Spectrometry with High-Frequency Modulation Polarization for the Direct Determination of Aluminum, Beryllium, Cadmium, Chromium, Mercury, Manganese, Nickel, Lead, and Thallium in Human Blood. Arch Environ Contam Toxicol 63, 299–308 (2012). https://doi.org/10.1007/s00244-012-9784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-012-9784-1

Keywords

Navigation