, Volume 35, Issue 4, pp 207-213
Date: 26 May 2007

Effect of smooth muscle relaxant drugs on proximal human ureteric activity in vivo: a pilot study

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Drugs are increasingly being used to promote stone passage in renal colic. Diclofenac, nifedipine and tamsulosin cause ureteric smooth muscle relaxation in vitro; however, in clinical trials nifedipine and tamsulosin promote stone passage whereas diclofenac has no apparent benefit. We adapted a ureteric pressure transducer catheter in an attempt to compare the human ureteric response to these drugs in vivo. The catheter was inserted into the contralateral ureter following ureteroscopy for stone disease. Contraction frequency, pressure and velocity measurements were recorded at 24 h. Each patient was randomly allocated to receive oral diclofenac, nifedipine or tamsulosin. Measurements were taken following drug administration. Eighteen patients (mean age 50 years) were recruited. Two patients were excluded intraoperatively and three required early removal of the catheter. Prior to drug administration, the mean number of contractions recorded was 0–4.1/min and the peak contraction pressure ranged from 11 to 35 mmHg. Conduction velocity ranged from 1.5 to 2.6 cm/s. Ureteric peristalsis persisted in all patients despite these drugs. Diclofenac and nifedipine produced inconsistent ureteric pressure responses but had little effect on contraction frequency. Tamsulosin significantly reduced ureteric pressure but had no effect on contraction frequency. There are many limitations associated with the use of ureteric catheters, however, they may provide some useful information when used to record the response to an intervention in the same patient. These preliminary results suggest a reduction in pressure generation may be the essential factor in the promotion of stone passage. More work is required but these drugs may work by preventing the increased, uncoordinated muscular activity seen in renal colic whilst maintaining peristalsis, thereby promoting stone passage.