Journal of Molecular Evolution

, Volume 79, Issue 1, pp 40–51

Control Region Length Dynamics Potentially Drives Amino Acid Evolution in Tarsier Mitochondrial Genomes

  • Stefan Merker
  • Sarah Thomas
  • Elke Völker
  • Dyah Perwitasari-Farajallah
  • Barbara Feldmeyer
  • Bruno Streit
  • Markus Pfenninger
Original Article

DOI: 10.1007/s00239-014-9631-2

Cite this article as:
Merker, S., Thomas, S., Völker, E. et al. J Mol Evol (2014) 79: 40. doi:10.1007/s00239-014-9631-2

Abstract

Patterns and processes of molecular evolution critically influence inferences in phylogeny and phylogeography. Within primates, a shift in evolutionary rates has been identified as the rationale for contrasting findings from mitochondrial and nuclear DNA studies as to the position of Tarsius. While the latter now seems settled, we sequenced complete mitochondrial genomes of three Sulawesi tarsiers (Tarsius dentatus, T. lariang, and T. wallacei) and analyzed substitution rates among tarsiers and other primates to infer driving processes of molecular evolution. We found substantial length polymorphism of the D-loop within tarsier individuals, but little variation of predominant lengths among them, regardless of species. Length variation was due to repetitive elements in the CSB domain—minisatellite motifs of 35 bp length and microsatellite motifs of 6 bp length. Amino acid evolutionary rates were second highest among major primate taxa relative to nucleotide substitution rates. We observed many radical possibly function-altering amino acid changes that were rarely driven by positive selection and thus potentially slightly deleterious or neutral. We hypothesize that the observed pattern of an increased amino acid evolutionary rate in tarsier mitochondrial genomes may be caused by hitchhiking of slightly deleterious mutations with favored D-loop length variants selected for maximizing replication success within the cell or the mitochondrion.

Keywords

Heteroplasmy Multilevel selection Primates Sulawesi Tandem repeats Tarsius 

Supplementary material

239_2014_9631_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2149 kb)
239_2014_9631_MOESM2_ESM.pdf (6 kb)
Supplementary material 2 (PDF 6 kb)
239_2014_9631_MOESM3_ESM.pdf (6 kb)
Supplementary material 3 (PDF 6 kb)
239_2014_9631_MOESM4_ESM.pdf (6 kb)
Supplementary material 4 (PDF 5 kb)
239_2014_9631_MOESM5_ESM.pdf (2.5 mb)
Supplementary material 5 (PDF 2520 kb)
239_2014_9631_MOESM6_ESM.pdf (7 kb)
Supplementary material 6 (PDF 6 kb)
239_2014_9631_MOESM7_ESM.pdf (7 kb)
Supplementary material 7 (PDF 6 kb)
239_2014_9631_MOESM8_ESM.pdf (49 kb)
Supplementary material 8 (PDF 49 kb)
239_2014_9631_MOESM9_ESM.pdf (82 kb)
Supplementary material 9 (PDF 82 kb)

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan Merker
    • 1
    • 2
  • Sarah Thomas
    • 2
  • Elke Völker
    • 2
  • Dyah Perwitasari-Farajallah
    • 3
  • Barbara Feldmeyer
    • 4
  • Bruno Streit
    • 2
  • Markus Pfenninger
    • 5
  1. 1.Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
  2. 2.Evolutionary Ecology GroupGoethe University Frankfurt/M.Frankfurt/M.Germany
  3. 3.Primate Research CenterBogor Agricultural UniversityBogorIndonesia
  4. 4.Department of Evolutionary BiologyJohannes-Gutenberg University MainzMainzGermany
  5. 5.Molecular Ecology GroupBiodiversity and Climate Research Centre (BiK-F) by Senckenberg Gesellschaft für Naturforschung and Goethe-UniversityFrankfurt/M.Germany