Journal of Molecular Evolution

, Volume 76, Issue 4, pp 192–204

Molecular Phylogeny and Evolution of the Proteins Encoded by Coleoid (Cuttlefish, Octopus, and Squid) Posterior Venom Glands

  • Tim Ruder
  • Kartik Sunagar
  • Eivind A. B. Undheim
  • Syed A. Ali
  • Tak-Cheung Wai
  • Dolyce H. W. Low
  • Timothy N. W. Jackson
  • Glenn F. King
  • Agostinho Antunes
  • Bryan G. Fry
Original Article

DOI: 10.1007/s00239-013-9552-5

Cite this article as:
Ruder, T., Sunagar, K., Undheim, E.A.B. et al. J Mol Evol (2013) 76: 192. doi:10.1007/s00239-013-9552-5

Abstract

In this study, we report for the first time a detailed evaluation of the phylogenetic history and molecular evolution of the major coleoid toxins: CAP, carboxypeptidase, chitinase, metalloprotease GON-domain, hyaluronidase, pacifastin, PLA2, SE-cephalotoxin and serine proteases, with the carboxypeptidase and GON-domain documented for the first time in the coleoid venom arsenal. We show that although a majority of sites in these coleoid venom-encoding genes have evolved under the regime of negative selection, a very small proportion of sites are influenced by the transient selection pressures. Moreover, nearly 70 % of these episodically adapted sites are confined to the molecular surface, highlighting the importance of variation of the toxin surface chemistry. Coleoid venoms were revealed to be as complex as other venoms that have traditionally been the recipient of the bulk of research efforts. The presence of multiple peptide/protein types in coleoids similar to those present in other animal venoms identifies a convergent strategy, revealing new information as to what characteristics make a peptide/protein type amenable for recruitment into chemical arsenals. Coleoid venoms have significant potential not only for understanding fundamental aspects of venom evolution but also as an untapped source of novel toxins for use in drug design and discovery.

Keywords

Molecular evolutionColeoidCephalopodOctopusSquidCuttlefishVenomPositive selection

Supplementary material

239_2013_9552_MOESM1_ESM.pdf (585 kb)
Supplementary material 1 (PDF 584 kb)
239_2013_9552_MOESM2_ESM.jpg (290 kb)
Supplementary material 2 (JPG 290 kb)

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tim Ruder
    • 1
  • Kartik Sunagar
    • 2
    • 3
  • Eivind A. B. Undheim
    • 1
    • 4
  • Syed A. Ali
    • 1
    • 5
  • Tak-Cheung Wai
    • 6
  • Dolyce H. W. Low
    • 1
  • Timothy N. W. Jackson
    • 1
  • Glenn F. King
    • 4
  • Agostinho Antunes
    • 2
    • 3
  • Bryan G. Fry
    • 1
  1. 1.Venom Evolution LabSchool of Biological Sciences, University of QueenslandSt. LuciaAustralia
  2. 2.CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  3. 3.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.Institute for Molecular BiosciencesUniversity of QueenslandSt. LuciaAustralia
  5. 5.HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS)University of KarachiKarachiPakistan
  6. 6.Department of Biology and Chemistry, State Key Laboratory in Marine PollutionCity University of Hong KongKowloonChina