Skip to main content
Log in

Euglena gracilis and Trypanosomatids Possess Common Patterns in Predicted Mitochondrial Targeting Presequences

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Euglena gracilis possessing chloroplasts of secondary green algal origin and parasitic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania major belong to the protist phylum Euglenozoa. Euglenozoa might be among the earliest eukaryotic branches bearing ancestral traits reminiscent of the last eukaryotic common ancestor (LECA) or missing features present in other eukaryotes. LECA most likely possessed mitochondria of endosymbiotic α-proteobacterial origin. In this study, we searched for the presence of homologs of mitochondria-targeted proteins from other organisms in the currently available EST dataset of E. gracilis. The common motifs in predicted N-terminal presequences and corresponding homologs from T. brucei, T. cruzi and L. major (if found) were analyzed. Other trypanosomatid mitochondrial protein precursor (e.g., those involved in RNA editing) were also included in the analysis. Mitochondrial presequences of E. gracilis and these trypanosomatids seem to be highly variable in sequence length (5–118 aa), but apparently share statistically significant similarities. In most cases, the common (M/L)RR motif is present at the N-terminus and it is probably responsible for recognition via import apparatus of mitochondrial outer membrane. Interestingly, this motif is present inside the predicted presequence region in some cases. In most presequences, this motif is followed by a hydrophobic region rich in alanine, leucine, and valine. In conclusion, either RR motif or arginine-rich region within hydrophobic aa-s present at the N-terminus of a preprotein can be sufficient signals for mitochondrial import irrespective of presequence length in Euglenozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmadinejad N, Dagan T, Martin W (2007) Genome history in the symbiotic hybrid Euglena gracilis. Gene 402:35–39

    Article  PubMed  CAS  Google Scholar 

  • Allen CA, Jackson AP, Rigden DJ, Willis AC, Ferguson SJ, Ginger ML (2008) Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 275:2385–2402

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: proceedings of the second international conference on intelligent systems for molecular biology, AAAI Press, Menlo Park, pp 28–36

  • Bonen L (1993) Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J 7:40–46

    PubMed  CAS  Google Scholar 

  • Bourne PE, Addess KJ, Bluhm WF, Chen L, Deshpande N, Feng Z, Fleri W, Green R, Merino-Ott JC, Townsend-Merino W, Weissig H, Westbrook J, Berman HM (2004) The distribution and query systems of the RCSB protein data bank. Nucl Acids Res 32:D223–D225

    Article  PubMed  CAS  Google Scholar 

  • Breglia SA, Yubuki N, Hoppenrath M, Leander BS (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida). BMC Microbiol 10:145

    Article  PubMed  Google Scholar 

  • Bromley EV, Taylor MC, Wilkinson SR, Kelly JM (2004) The amino terminal domain of novel WD repeat protein from Trypanosoma cruzi contains a non-canonical mitochondrial targeting signal. Int J Parasitol 34:63–71

    Article  PubMed  CAS  Google Scholar 

  • Callahan H, Litaker RW, Noga EJ (2002) Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo nacator. J Eukaryot Microbiol 49:119–128

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and the phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345

    Article  PubMed  Google Scholar 

  • Chan Y-F, Moestrup Ø, Chang J (2012) On Keelungia pulex nov. gen. et nov. sp., a heterotrophic euglenoid flagellate that lacks pellicular plates (Euglenophyceae, Euglenida). Eur J Protistol. http://dx.doi.org/10.1016/j.ejop.2012.04.003. Accessed 13 Aug 2012

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Cui J-Y, Mukai K, Saeki K, Matsubara H (1994) Molecular cloning and nucleotide sequences of cDNAs encoding subunits I, II and IX of Euglena gracilis mitochondrial complex III. J Biochem 115:98–107

    PubMed  CAS  Google Scholar 

  • Deschamps P, Lara E, Marande W, López-García P, Ekelund F, Moreira D (2011) Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Mol Biol Evol 28:53–58

    Article  PubMed  CAS  Google Scholar 

  • Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S (2011) On the last common ancestor and early evolution of eukaryotes: Reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70

    Article  PubMed  CAS  Google Scholar 

  • Di Giulio M (2007) The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 20:543–548

    Article  PubMed  Google Scholar 

  • Dooijes D, Chaves I, Kieft RA, Dirks-Mulder A, Martin W, Borst P (2000) Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis. Nucl Acids Res 28:3017–3021

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Eukaryot Cell 5:2079–2091

    Article  PubMed  CAS  Google Scholar 

  • Dyková I, Fiala I, Lom J, Lukeš J (2003) Perkinsiella amoebae-like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo. Eur J Protistol 39:37–52

    Article  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Ferreira VD, Rocchette I, Conforti V, Bench S, Feldman R, Levin MJ (2007) Gene expression patterns in Euglena gracilis: insight into the cellular response to environmental stress. Gene 389:136–145

    Article  Google Scholar 

  • Frantz C, Ebel C, Paulus F, Imbault P (2000) Characterization of trans-splicing in Euglenoids. Curr Genet 37:349–355

    Article  PubMed  CAS  Google Scholar 

  • Frith MC, Saunders NFW, Kobe B, Bailey TL (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol 4:e1000071

    Article  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005). Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook, Humana Press, Totowa, pp 571–607

  • Gawryluk RMR, Gray MW (2009) A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa. BMC Res Notes 2:16

    Article  PubMed  Google Scholar 

  • Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC (2010) Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionary diverse eukaryotes. Protist 161:642–671

    Article  PubMed  CAS  Google Scholar 

  • Hajduk SL, Harris ME, Pollard VW (1993) RNA editing in kinetoplastid mitochondria. FASEB J 7:54–63

    PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Häusler T, Stierhof YD, Blattner J, Clayton C (1997) Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur J Cell Biol 73:240–251

    PubMed  Google Scholar 

  • Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genome Bio Evol 3:359–364

    Article  Google Scholar 

  • Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12:251–258

    Article  PubMed  CAS  Google Scholar 

  • Leander BS, Triemer RE, Farmer MA (2001) Character evolution in heterotrophic euglenids. Eur J Protistol 37:337–356

    Article  Google Scholar 

  • Liang XH, Haritan A, Uliel S, Michaeli S (2003) Trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell 2:830–840

    Article  PubMed  CAS  Google Scholar 

  • Likic VA, Doležal P, Celik N, Dagley M, Lithgow T (2010) Using hidden markov models to discover new protein transport machineries. Methods Mol Biol 619:271–284

    Article  PubMed  CAS  Google Scholar 

  • Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE (2010) Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist 161:603–619

    Article  PubMed  CAS  Google Scholar 

  • Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Phil Trans R Soc B 365:799–817

    Article  PubMed  CAS  Google Scholar 

  • Long S, Jirků M, Ayala FJ, Lukeš J (2008) Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci USA 105:1373–13468

    Google Scholar 

  • Marande W, Burger G (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Maslov DA, Zíková A, Kyselová I, Lukeš J (2002) A putative novel nuclear-encoded subunit of cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol 125:113–225

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P, Vickerman K (2004) An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the Class kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H, Ohta N, Matsuzaki M, Misumi O, Kuroiwa T (2003) Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. J Mol Evol 57:377–382

    Article  PubMed  CAS  Google Scholar 

  • Priest JW, Hajduk SL (1996) In vitro import of the Rieske iron-sulfur protein by trypanosome mitochondria. J Biol Chem 271:20060–20069

    Article  PubMed  CAS  Google Scholar 

  • Priest JW, Hajduk SL (2003) Trypanosoma brucei cytochrome c1 is imported into mitochondria along an unusual pathway. J Biol Chem 287:15084–15094

    Article  Google Scholar 

  • Priest JW, Wood ZA, Hajduk SL (1993) Cytochromes c1 of kinetoplastid protozoa lack mitochondrial targeting presequences. Biochim Biophys Acta 1144:229–231

    Article  PubMed  CAS  Google Scholar 

  • Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warcheid B, Lithgow T, Meisinger C, Schneider A (2011) Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol 21:1738–1743

    Article  PubMed  CAS  Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Bursa D, Lithgow T (2008) The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol 18:12–18

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB (1997) The identity and composition of the Euglenozoa. Arch Protistenkd 148:318–328

    Article  Google Scholar 

  • Simpson AGB, Roger AJ (2004) Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 30:201–212

    Article  PubMed  CAS  Google Scholar 

  • Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA (2000) Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA 97:6986–6993

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB, Lukeš J, Roger AJ (2002) The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083

    Article  PubMed  CAS  Google Scholar 

  • Simpson AGB, Gill EE, Callahan HA, Litaker RW, Roger AJ (2004) Early evolution within kinetoplastids (Euglenozoa), and the late emergence of trypanosomatids. Protist 155:407–422

    Article  PubMed  Google Scholar 

  • Simpson AGB, Stevens JR, Lukeš J (2006) The evolution of kinetoplastid flagellates. Trends Parasitol 22:168–174

    Article  PubMed  CAS  Google Scholar 

  • Singha UK, Paprah E, Williams R, Saha L, Chaudhuri M (2008) Characterization of the mitochondrial inner protein translocator Tim17 from Trypanosoma brucei. Mol Biochem Parasitol 159:30–43

    Article  PubMed  CAS  Google Scholar 

  • Söding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  • Spencer DF, Gray MW (2011) Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Genet Genomics 285:19–31

    Article  PubMed  CAS  Google Scholar 

  • Stuart K, Panigrahi AK (2002) RNA editing: complexity and complications. Mol Microbiol 45:591–596

    Article  PubMed  CAS  Google Scholar 

  • Tasker M, Timms M, Hendriks E, Matthews K (2001) Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels. Mol Microbiol 39:272–285

    Article  PubMed  CAS  Google Scholar 

  • Triemer RE, Farmer MA (1991) An ultrastructural comparison of the mitotic apparatus, feeding apparatus, flagellar apparatus and cytoskeleton in euglenoids and kinetoplastids. Protoplasma 164:91–104

    Article  Google Scholar 

  • Turmel M, Gagnon M-C, O`Kelly CJ, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648

    Article  PubMed  CAS  Google Scholar 

  • Uboldi AD, Lueder FB, Walsh P, Spurck T, McFadden GI, Curtis J, Likic VA, Perugini MA, Barson M, Lithgow T, Handman E (2006) A mitochondrial protein affects cell morphology, mitochondrial segregation and virulence in Leishmania. Int J Parasitol 36:1499–1514

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Krajčovič J (2008) Origin of eukaryotic cells as a symbiosis of parasitic α-proteobacteria in the periplasm of two-membrane-bounded sexual pre-karyotes. Commun Integr Biol 1:104–113

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Krajčovič J (2011) The falsifiability of the models for the origin of eukaryotes. Curr Genet 57:367–390

    Article  PubMed  CAS  Google Scholar 

  • Vesteg M, Vacula R, Steiner JM, Mateášiková B, Löffelhardt W, Brejová B, Krajčovič J (2010) A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 17:223–231

    Article  PubMed  CAS  Google Scholar 

  • Vlček Č, Marande W, Teijeiro S, Lukeš J, Burger G (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucl Acids Res 39:979–988

    Article  PubMed  Google Scholar 

  • von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T (2004) Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol 51:402–416

    Article  PubMed  Google Scholar 

  • Williams S, Saha L, Singha UK, Chaudhuri M (2008) Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp Parasitol 118:420–433

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Yubuki N, Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12:29

    Article  PubMed  Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhardt JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9:16

    Article  PubMed  Google Scholar 

  • Žárský V, Tachezy J, Doležal P (2012) Tom40 is likely common to all mitochondria. Curr Biol 22:R479–R481

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Grant Agency of the Slovak Ministry of Education and the Academy of Sciences (grants 1/0416/09 and 1/0393/09), Comenius University Grants (UK/54/2011), Czech Science Foundation grant P506/11/1320, and is the result of the project implementation: “The Improvement of Centre of excellence for exploitation of informational biomacromolecules in improvement of quality of life,” ITMS 26240120027, supported by the Research & Development Operational Programme funded by the ERDF. This paper has been published in frame of the project “Strengthening research institutions at the University of Ostrava,” CZ.1.07/2.3.00/30.0047, which is co-financed by the European Social Fund and the state budget of the Czech Republic. We thank Dr. Broňa Brejová (Department of Computer Science, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, Slovakia), Dr. Tomáš Vinař (Department of Applied Informatics, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, Slovakia), and Dr. Pavel Doležal and Vojtěch Žárský (both from the Department of Parasitology, Faculty of Science, Charles University in Prague) for help with the choice of appropriate bioinformatic programs to analyze the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Vesteg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krnáčová, K., Vesteg, M., Hampl, V. et al. Euglena gracilis and Trypanosomatids Possess Common Patterns in Predicted Mitochondrial Targeting Presequences. J Mol Evol 75, 119–129 (2012). https://doi.org/10.1007/s00239-012-9523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-012-9523-2

Keywords

Navigation