, Volume 69, Issue 5, pp 406-429,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 01 Oct 2009

RNA–Amino Acid Binding: A Stereochemical Era for the Genetic Code

Abstract

By combining crystallographic and NMR structural data for RNA-bound amino acids within riboswitches, aptamers, and RNPs, chemical principles governing specific RNA interaction with amino acids can be deduced. Such principles, which we summarize in a “polar profile”, are useful in explaining newly selected specific RNA binding sites for free amino acids bearing varied side chains charged, neutral polar, aliphatic, and aromatic. Such amino acid sites can be queried for parallels to the genetic code. Using recent sequences for 337 independent binding sites directed to 8 amino acids and containing 18,551 nucleotides in all, we show a highly robust connection between amino acids and cognate coding triplets within their RNA binding sites. The apparent probability (P) that cognate triplets around these sites are unrelated to binding sites is ≅5.3 × 10−45 for codons overall, and P ≅ 2.1 × 10−46 for cognate anticodons. Therefore, some triplets are unequivocally localized near their present amino acids. Accordingly, there was likely a stereochemical era during evolution of the genetic code, relying on chemical interactions between amino acids and the tertiary structures of RNA binding sites. Use of cognate coding triplets in RNA binding sites is nevertheless sparse, with only 21% of possible triplets appearing. Reasoning from such broad recurrent trends in our results, a majority (approximately 75%) of modern amino acids entered the code in this stereochemical era; nevertheless, a minority (approximately 21%) of modern codons and anticodons were assigned via RNA binding sites. A Direct RNA Template scheme embodying a credible early history for coded peptide synthesis is readily constructed based on these observations.