, Volume 60, Issue 3, pp 378-390

The Origin and Evolution of Operons: The Piecewise Building of the Proteobacterial Histidine Operon

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The structure and organization of 470 histidine biosynthetic genes from 47 different proteobacteria were combined with phylogenetic inference to investigate the mechanisms responsible for assembly of the his pathway and the origin of his operons. Data obtained in this work showed that a wide variety of different organization strategies of his gene arrays exist and that some his genes or entire his operons are likely to have been horizontally transferred between bacteria of the same or different proteobacterial branches. We propose a “piecewise” model for the origin and evolution of proteobacterial his operons, according to which the initially scattered his genes of the ancestor of proteobacteria coded for monofunctional enzymes (except possibly for hisD) and underwent a stepwise compacting process that reached its culmination in some γ-proteobacteria. The initial step of operon buildup was the formation of the his “core,” a cluster consisting of four genes (hisBHAF) whose products interconnect histidine biosynthesis to both de novo synthesis of purine metabolism and that occurred in the common ancestor of the α/β/γ branches, possibly after its separation from the ε one. The following step was the formation of three mini-operons (hisGDC, hisBHAF, hisIE) transcribed from independent promoters, that very likely occurred in the ancestor of the β/γ-branch, after its separation from the α one. Then the three mini-operons joined together to give a compact operon. In most γ-proteobacteria the two fusions involving the gene pairs hisNB and hisIE occurred. Finally the γ-proteobacterial his operon was horizontally transferred to other proteobacteria, such as Campylobacter jejuni. The biological significance of clustering of his genes is also discussed.