Journal of Molecular Evolution

, Volume 60, Issue 3, pp 277-289

First online:

Evolutionary Relationships of the Limnochromini, a Tribe of Benthic Deepwater Cichlid Fish Endemic to Lake Tanganyika, East Africa

  • Nina DuftnerAffiliated withDepartment of Zoology, Karl-Franzens-University of Graz
  • , Stephan KoblmüllerAffiliated withDepartment of Zoology, Karl-Franzens-University of Graz
  • , Christian SturmbauerAffiliated withDepartment of Zoology, Karl-Franzens-University of Graz Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Lake Tanganyika harbors an enormous diversity of cichlid fish that stem from eight distinct ancestral lineages, which colonized the lake after its formation 9 to 12 million years ago. Six of twelve currently described tribes are assigned to the “H-lineage,” an assemblage of exclusively mouthbrood-ing cichlids, all of which evolved during a short period of time during the course of the primary radiation of lacustrine species. Our study focuses on the deepwater tribe Limnochromini, comprising bi-parental mouthbrooders, and is based on phylogenetic analysis of two mitochondrial gene segments. We confirm the polyphyletic origin of the Limnochromini as they are defined to date, in that Gnathochromis pfefferi is placed among the Tropheini, whereas the genus Benthochromis is presented as an independent lineage. The remaining nine species were unambiguously resolved as monophyletic and should be redefined as the tribe Limnochromini. Concerning generic assignments, the genus Greenwoodochromis appeared as monophyletic, Limnochromis as paraphyletic, and the genera Reganochromis and Baileychromis as monophyletic sister genera. The linearized tree analysis and the comparison of average sequence divergences to that of the remaining tribes of the H-lineage revealed a relatively recent but simultaneous proliferation of the Limnochromini, suggesting that the same environmental changes triggered the radiation of particular deepwater, benthic, pelagic, and littoral lineages. By using a preliminary calibration of a molecular clock based on gamma-corrected amino acid distances of the NADH2 gene, the diversification of the Limnochromini could tentatively be dated to 2.9–3.5 MYA, coinciding with a period of aridification in East Africa between 2.5 and 3 MYA. The lack of geographic color morphs and the structural uniformity and resource scarcity of deepwater habitats suggest that competition and resource partitioning leading to differential trophic specialization promoted speciation within the Limnochromini, rather than an allopatric model.


Adaptive radiation Control region NADH dehydrogenase subunit 2 Explosive speciation Niche partitioning Molecular clock