Journal of Molecular Evolution

, Volume 56, Issue 5, pp 540-563

Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution

  • Thomas Cavalier-SmithAffiliated withDepartment of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
  • , Ema E. -Y. ChaoAffiliated withDepartment of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The primary diversification of eukaryotes involved protozoa, especially zooflagellates—flagellate protozoa without plastids. Understanding the origins of the higher eukaryotic kingdoms (two purely heterotrophic, Animalia and Fungi, and two primarily photosynthetic, Plantae and Chromista) depends on clarifying evolutionary relationships among the phyla of the ancestral kingdom Protozoa. We therefore sequenced 18S rRNA genes from 10 strains from the protozoan phyla Choanozoa and Apusozoa. Eukaryote diversity is encompassed by three early-radiating, arguably monophyletic groups: Amoebozoa, opisthokonts, and bikonts. Our taxon-rich rRNA phylogeny for eukaryotes allowing for intersite rate variation strongly supports the opisthokont clade (animals, Choanozoa, Fungi). It agrees with the view that Choanozoa are sisters of or ancestral to animals and reveals a novel nonflagellate choanozoan lineage, Ministeriida, sister either to choanoflagellates, traditionally considered animal ancestors, or to animals. Maximum likelihood trees suggest that within animals Placozoa are derived from medusozoan Cnidaria (we therefore place Placozoa as a class within subphylum Medusozoa of the Cnidaria) and hexactinellid sponges evolved from demosponges. The bikont and amoebozoan radiations are both very ill resolved. Bikonts comprise the kingdoms Plantae and Chromista and three major protozoan groups: alveolates, excavates, and Rhizaria. Our analysis weakly suggests that Apusozoa, represented by Ancyromonas and the apusomonads (Apusomonas and the highly diverse and much more ancient genus Amastigomonas, from which it evolved), are not closely related to other Rhizaria and may be the most divergent bikont lineages. Although Ancyromonas and apusomonads appear deeply divergent in 18S rRNA trees, the trees neither refute nor support the monophyly of Apusozoa. The bikont phylum Cercozoa weakly but consistently appears as sister to Retaria (Foraminifera; Radiolaria), together forming a hitherto largely unrecognized major protozoan assemblage (core Rhizaria) in the eukaryote tree. Both 18S rRNA sequence trees and a rare deletion show that nonciliate haplosporidian and paramyxid parasites of shellfish (together comprising the Ascetosporea) are not two separate phyla, as often thought, but part of the Cercozoa, and may be related to the plant-parasitic plasmodiophorids and phagomyxids, which were originally the only parasites included in the Cercozoa. We discuss rRNA trees in relation to other evidence concerning the basal diversification and root of the eukaryotic tree and argue that bikonts and opisthokonts, at least, are holophyletic. Amoebozoa and bikonts may be sisters—jointly called anterokonts, as they ancestrally had an anterior cilium, not a posterior one like opisthokonts; this contrasting ciliary orientation may reflect a primary divergence in feeding mode of the first eukaryotes. Anterokonts also differ from opisthokonts in sterol biosynthesis (cycloartenol versus lanosterol pathway), major exoskeletal polymers (cellulose versus chitin), and mitochondrial cristae (ancestrally tubular not flat), possibly also primary divergences.

Apusozoa Amastigomonas Ministeria Cercozoa Ascetosporea Choanozoa Placozoa Hexactinellid sponges Sterol biosynthesis Bikonts