, Volume 54, Issue 6, pp 715-724
Date: 25 Feb 2014

The Evolution of Gymnosperms Redrawn by Phytochrome Genes: The Gnetatae Appear at the Base of the Gymnosperms

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

Gymnosperms possess two to four phytochrome types which apparently are the result of successive gene duplications in the genomes of their common ancestors. Phytochromes are nuclear-encoded proteins whose genes, contrary to chloroplast, mitochondrion, and rRNA genes, have hitherto rarely been used to examine gymnosperm phylogenies. Since the individual phytochrome gene types implied phylogenies that were not completely congruent to one another, conflicting branching orders were sorted by the number of gene lineages present in a taxon. The Gnetatae (two gene types) branched at the base of all gymnosperms, a position supported by bootstrap sampling (distance and character state trees, maximum likelihood). The Gnetatae were followed by Ginkgo, Cycadatae, and Pinaceae (three gene types) and the remaining conifers (four gene types). Therefore, in phytochrome trees, the most ancient branch of the conifers (Pinatae) seems to be the Pinaceae. The next split appears to have separated Araucariaceae plus Podocarpaceae from the Taxaceae/Taxodiaceae/Cupressaceae group. Structural arrangements in the plastid genomes (Raubeson and Jansen 1992) corroborate the finding that there is no close connection between Pinaceae and Gnetatae as suggested by some publications. The analyses are based on 60 phytochrome genes (579 positions in an alignment of PCR fragments) from 28 species. According to rough divergence time estimates, the last common ancestor of gymnosperms and angiosperms is likely to have existed in the Carboniferous.