Acta Informatica

, Volume 43, Issue 1, pp 1–43

Algebraic Correctness Proofs for Compiling Recursive Function Definitions with Strictness Information

Original Article

DOI: 10.1007/s00236-006-0013-0

Cite this article as:
Indermark, K. & Noll, T. Acta Informatica (2006) 43: 1. doi:10.1007/s00236-006-0013-0


Adding appropriate strictness information to recursive function definitions we achieve a uniform treatment of lazy and eager evaluation strategies. By restriction to first-order functions over basic types we develop a pure stack implementation that avoids a heap even for lazy arguments. We present algebraic definitions of denotational, operational, and stack-machine semantics and prove their equivalence by means of structural induction.


Functional languagesEvaluation strategiesCompiler correctnessFormal semanticsStack implementation

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Lehrstuhl für Informatik 2RWTH Aachen UniversityAachenGermany