Skip to main content
Log in

Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor–liquid equilibria

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Using molecular dynamics simulations, the present study investigates the precise characteristics of evaporating and reflecting monatomic molecules (argon) composing a kinetic boundary condition (KBC) in a vapor–liquid equilibria. We counted the evaporating and reflecting molecules utilizing two boundaries (vapor and liquid boundaries) proposed by the previous studies (Meland et al. in Phys Fluids 16:223–243, 2004; Gu et al. in Fluid Phase Equilib 297:77–89, 2010). In the present study, we improved the method using the two boundaries incorporating the concept of the spontaneously evaporating molecular mass flux. The present method allows us to count the evaporating and reflecting molecules easily, to investigate the detail motion of the evaporating and reflecting molecules, and also to evaluate the velocity distribution function of the KBC at the vapor–liquid interface, appropriately. From the results, we confirm that the evaporating and reflecting molecules in the normal direction to the interface have slightly faster and significantly slower average velocities than that of the Maxwell distribution at the liquid temperature, respectively. Also, the stall time of the reflecting molecules at the interphase that is the region in the vicinity of the vapor–liquid interface is much shorter than those of the evaporating molecules. Furthermore, we discuss our method for constructing the KBC that incorporates condensation and evaporation coefficients. Based on these results, we suggest that the proposed method is appropriate for investigating KBC in various nonequilibrium states or multi-component systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee J, Laoui T, Karnik R (2014) Nanofluidic transport governed by the liquid/vapour interface. Nat Nanotechnol 9:317–323. doi:10.1038/nnano.2014.28

    Article  Google Scholar 

  2. Toghraie Semiromi D, Azimian AR (2012) Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf 48:141–152. doi:10.1007/s00231-011-0855-z

    Article  Google Scholar 

  3. Sone Y (2007) Molecular gas dynamics: theory, techniques and applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  4. Cercignani C (2000) Rarefied gas dynamics: from basic concepts to actual calculations. Cambridge University Press, New York

    MATH  Google Scholar 

  5. Frezzotti A (2011) Boundary conditions at the vapor–liquid interface. Phys Fluids 23:030609. doi:10.1063/1.3567001

    Article  MATH  Google Scholar 

  6. Fujikawa S, Yano T, Watanabe M (2011) Vapor–liquid interface, bubble and droplets: fundamentals and applications. Springer, New York

    Book  MATH  Google Scholar 

  7. Kon M, Kobayashi K, Watanabe M (2014) Method of determining kinetic boundary conditions in net evaporation/condensation. Phys Fluids 26:072003. doi:10.1063/1.4890523

    Article  Google Scholar 

  8. Kon M, Kobayashi K, Watanabe M (2014) Numerical analysis of kinetic boundary conditions at net evaporation/condensation interfaces in various liquid temperatures based on mean-field kinetic theory. AIP Conf Proc 1628:398–403. doi:10.1063/1.4902620

    Article  Google Scholar 

  9. Matsumoto M (1998) Molecular dynamics of fluid phase change. Fluid Phase Equilib 144:307–314. doi:10.1016/S0378-3812(97)00274-4

    Article  Google Scholar 

  10. Anisimov SI, Dunikov DO, Zhakhovskii VV, Malyshenko SP (1999) Properties of a liquid–gas interface at high-rate evaporation. J Chem Phys 110:8722–8729. doi:10.1063/1.478779

    Article  Google Scholar 

  11. Tsuruta T, Tanaka H, Masuoka T (1999) Condensation/evaporation coefficient and velocity distributions at liquid–vapor interface. Int J Heat Mass Transf 42:4107–4116. doi:10.1016/S0017-9310(99)00081-2

    Article  MATH  Google Scholar 

  12. Ishiyama T, Yano T, Fujikawa S (2004) Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase. Phys Fluids 16:2899–2906. doi:10.1063/1.1763936

    Article  MATH  Google Scholar 

  13. Meland R, Frezzotti A, Ytrehus T, Hafskjold B (2004) Nonequilibrium molecular-dynamics simulation of net evaporation and net condensation, and evaluation of the gas-kinetic boundary condition at the interphase. Phys. Fluids 16:223–243. doi:10.1063/1.1630797

    Article  MATH  Google Scholar 

  14. Gu K, Watkins CB, Koplik J (2010) Molecular dynamics simulation of the equilibrium liquid–vapor interphase with solidification. Fluid Phase Equilib 297:77–89. doi:10.1016/j.fluid.2010.06.014

    Article  Google Scholar 

  15. Gu K, Watkins CB, Koplik J (2010) Multiscale molecular simulations of argon vapor condensation onto a cooled substrate with bulk flow. Phys Fluids 22:112002. doi:10.1063/1.3517293

    Article  Google Scholar 

  16. Xie JF, Sazhin SS, Cao BY (2011) Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. Phys Fluids 23:112104. doi:10.1063/1.3662004

    Article  Google Scholar 

  17. Cao BY, Xie JF, Sazhin SS (2011) Molecular dynamics study on evaporation and condensation of n-dodecane at liquid–vapor phase equilibria. J Chem Phys 134:164309. doi:10.1063/1.3579457

    Article  Google Scholar 

  18. Xie JF, Sazhin SS, Cao BY (2012) Molecular dynamics study of condensation/evaporation and velocity distribution of n-dodecane at liquid–vapour phase equilibria. J Thermal Sci Technol 7:1–13. doi:10.1299/jtst.7.288

    Article  Google Scholar 

  19. Louden P, Schoenborn R, Lawrence CP (2013) Molecular dynamics simulations of the condensation coefficient of water. Fluid Phase Equilib 349:83–86. doi:10.1016/j.fluid.2013.04.006

    Article  Google Scholar 

  20. Kryukov AP, Levashov VY, Pavlyukevich NV (2014) Condensation coefficient: definitions, estimations, modern experimental and calculation data. J Eng Phys Thermophys 87:237–245. doi:10.1007/s10891-014-1006-4

    Article  Google Scholar 

  21. Frezzotti A (2011) Non-equilibrium structure of the vapor–liquid interface of a binary fluid. AIP Conf Proc 1333:161–167. doi:10.1063/1.3562642

    Article  Google Scholar 

  22. Janeček J (2006) Long range corrections in inhomogeneous simulations. J Phys Chem B 110:6264–6269. doi:10.1021/jp056344z

    Article  Google Scholar 

  23. Allen MP, Tildesley DJ (1987) Computer simulation of liquid. Oxford University Press, New York

    MATH  Google Scholar 

  24. Tegeler CH, Span R, Wagner W (1999) A new equation of state for argon convering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J Phys Chem Ref Data 28:779–850

    Article  Google Scholar 

  25. Kobayashi K, Hori K, Yaguchi H, Watanabe M (2014) Molecular dynamics simulation on evaporation molecules in a vapor–liquid equilibrium state. AIP Conf Proc 1628:404–410. doi:10.1063/1.4902621

    Article  Google Scholar 

  26. Frezzotti A, Gibelli L, Lorenzani S (2005) Mean field kinetic theory description of evaporation of a fluid into vacuum. Phys Fluids 17:012102. doi:10.1063/1.1824111

    Article  MATH  Google Scholar 

  27. Ishiyama T, Fujikawa S, Kurz T, Lauterborn W (2013) Nonequilibrium kinetic boundary condition at the vapor–liquid interface of argon. Phys Rev E 88:042406. doi:10.1103/PhysRevE.88.042406

    Article  Google Scholar 

  28. Tsuruta T, Tokunaga A, Nagayama G (2011) Molecular boundary conditions and accommodation coefficient on a nonequilibrium liquid surface. AIP Conf Proc 1333:859–864. doi:10.1063/1.3562753

    Article  Google Scholar 

  29. Kobayashi K, Watanabe S, Yamano D, Yano T, Fujikawa S (2008) Condensation coefficient of water in a weak condensation state. Fluid Dyn Res 40:585–596. doi:10.1016/j.fluiddyn.2007.12.011

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumichi Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Hori, K., Kon, M. et al. Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor–liquid equilibria. Heat Mass Transfer 52, 1851–1859 (2016). https://doi.org/10.1007/s00231-015-1700-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1700-6

Keywords

Navigation