Find out how to access previewonly content
Date:
10 Aug 2012
Numerical feasibility study of utilizing nanofluids in laminar natural convection inside enclosures
 Khaled Khodary Esmaeil
 … show all 1 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Laminar natural convective heat transfer of nanofluids inside an enclosure is numerically investigated considering the thermal dispersion effect of the nanoparticles. Feasibility of applying nanofluids instead of pure liquids in natural convective, which is a discrepancy issue between the previous numerical and experimental works, is examined. Results confirm the previous experimental results of general deterioration in heat transfer rate. Discussions, justifications and correlations for average Nusselt number are presented.
References
1.
Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of nonnewtonian flows. FEDvol 231/MD, vol 66. ASME, New York, pp 99–105
2.
Eastman JA, Choi SUS, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycolbased nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRef
3.
Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64CrossRef
4.
5.
Jou RY, Tzeng SC (2006) Numerical research of nature convective heat transfer enhancement. Int Commun Heat Mass Transf 33:727–736CrossRef
6.
Oztop HF, AbuNada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow 29:1326–1336CrossRef
7.
Öğüt EB (2009) Natural convection of waterbased nanofluids in an inclined enclosure with a heat source. Int J Therm Sci 48:2063–2073CrossRef
8.
Mahmoodi M (2011) Numerical simulation of free convection of a nanofluid in Lshaped cavities. Int J Therm Sci 50:1731–1740CrossRef
9.
Santra AK, Sen S, Chakraborty N (2008) Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid. Int J Therm Sci 47:1113–1122CrossRef
10.
Putra N, Roetzel W, Das SK (2003) Natural convective of nanofluids. Heat Mass Transf 39:775–784CrossRef
11.
Wen D, Ding Y (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26:855–864CrossRef
12.
Li CH, Peterson GP (2010) Experimental studies of natural convection heat transfer of Al_{2}O_{3}/DI water nanoparticle suspensions (nanofluids). Adv Mech Eng, Article ID 742739. doi:10.1155/2010/742739
13.
Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of aluminawater nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49:1345–1353CrossRef
14.
Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196:89–101CrossRef
15.
Maxwell JC (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Cambridge, pp 435–441
16.
Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous twocomponent systems. Ind Eng Chem Fundam 1(3):187–191CrossRef
17.
Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef
18.
Xue Q, Xu W (2005) A model of thermal conductivity of nanofluids with interfacial shells. Chem Phys 90:298–301
19.
20.
Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254CrossRef
21.
Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043CrossRef
22.
Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRef
23.
24.
Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRef
25.
26.
Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al_{2}O_{3}) thermal conductivity enhancement. Appl Phys Lett 87(15):153107:1–3
27.
Prasher R, Bhattacharya P, Phelan PE (2006) Brownianmotionbased convective–conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRef
28.
Jang SP, Choi SUS (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf 129:617–623CrossRef
29.
Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29:2477–2483CrossRef
30.
Chandrasekar M, Suresh S, Chandra Bose A (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al_{2}O_{3}/water nanofluid. Exp Therm Fluid Sci 34:210–216CrossRef
31.
Corcione M (2010) Heat transfer features of buoyancydriven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci 49:1536–1546CrossRef
32.
Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580. doi:10.1007/s1076500600541
MATHCrossRef
34.
Krieger IM, Dougherty TJ (1959) A mechanism for nonNewtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152CrossRef
35.
Frankel NA, Acrivos A (1967) On the viscosity of a concentrate suspension of solid spheres. Chem Eng Sci 22:847–853CrossRef
36.
Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627CrossRef
37.
Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117MathSciNetCrossRef
38.
Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Bouche S, Mintsa AH (2007) Temperature and particlesize dependent viscosity data for waterbased nanofluids—Hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506CrossRef
39.
Ghasemi B, Aminossadati SM (2010) Periodic natural convection in a nanofluidfilled enclosure with oscillating heat flux. Int J Therm Sci 49:1–9CrossRef
40.
Godso L, Raja B, Lal MD, Wongwises S (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14:629–641CrossRef
41.
42.
44.
Mokmeli A, SaffarAvval M (2010) Prediction of nanofluid convective heat transfer using the dispersion model. Int J Therm Sci 49:471–478CrossRef
45.
Amiri A, Vafai K (1994) Analysis of dispersion effects and nonthermal equilibrium, nonDarcian, variable porosity, incompressible flow through porous media. Int J Heat Mass Transf 37:939–954CrossRef
46.
47.
De Vahl DavisG (1962) Natural convection of air in a square cavity, a benchmark numerical solution. Int J Numer Methods Fluids 3:249–264
48.
Markatos NC, Pericleous KA (1984) Laminar and turbulent natural convection in an enclosed cavity. Int J Heat Mass Transf 27:772–775
49.
Fusegi T, Hyun JM, Kuwahara K, Farouk B (1991) A numerical study of threedimensional natural convection in a differentially heated cubical enclosure. Int J Heat Mass Transf 34:1543–1557CrossRef
50.
51.
Krane RJ, Jessee J (1983) Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the first ASMEJSME thermal engineering joint conference, vol 1, pp 323–329
 Title
 Numerical feasibility study of utilizing nanofluids in laminar natural convection inside enclosures
 Journal

Heat and Mass Transfer
Volume 49, Issue 1 , pp 4154
 Cover Date
 20130101
 DOI
 10.1007/s002310121059x
 Print ISSN
 09477411
 Online ISSN
 14321181
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Industry Sectors
 Authors

 Khaled Khodary Esmaeil ^{(1)} ^{(2)}
 Author Affiliations

 1. Mechanical Engineering Department, College of Engineering, Qassim University, P. O. Box 6677, Buraidah, 51452, KSA
 2. Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt