Skip to main content
Log in

Site fidelity and homing behaviour in intertidal fishes

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The theory of ecological cognition poses that the brains and behaviour of animals are shaped by the environmental challenges they face in their everyday lives. Site fidelity and homing ability was tested for five species of intertidal rock pool fish by tagging and displacing them to new rock pools at various distances from their ‘home’ rock pools. Three of the species were rock pool specialists whilst the remaining two spend a small proportion of their life in rock pools during early ontogeny. The three specialists showed strong site fidelity with >50 % of individuals found in the same pool 42 days after tagging. In contrast, the non-specialist species showed low fidelity and poor homing abilities. Homing success in the rock pool specialists remained relatively stable as displacement distance increased. The effect of body size on homing ability was species dependent, with only one species showing a significantly greater tendency to home with increasing size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armstrong JD, Braithwaite VA, Huntingford FA (1997) Spatial strategies of wild Atlantic salmon parr: exploration and settlement in unfamiliar areas. J Anim Ecol 66:203–211

    Article  Google Scholar 

  • Aronson LR (1951) Orientation and jumping behaviour in the gobiid fish Bathygobius soporator. Amer Mus Nov 1486:1–12

    Google Scholar 

  • Aronson LR (1971) Further studies of the orientation and jumping behaviour in the gobiid fish Bathygobius soporator. Ann NY Acad Sci 188:378–407

    Article  CAS  Google Scholar 

  • Balda RP, Kamil AC (1992) Long-term spatial memory in Clark’s nutcracker, Nucifraga Columbiana. Anim Behav 44:761–769

    Article  Google Scholar 

  • Beebe W (1931) Notes on the frill-finned goby. Zoologica (NY) 12:55–66

    Google Scholar 

  • Belanger G, Rodriguez MA (2001) Homing behaviour of stream dwelling brook charr following experimental displacement. J Fish Biol 59:987–1001

    Article  Google Scholar 

  • Berti R, Colombini I, Chelazzi L, Ercolini A (1994) Directional orientation in Kenyan populations of Periophthalmus sobrinus Eggert: experimental analysis of the operating mechanisms. J Exp Mar Biol Ecol 18:135–141

    Article  Google Scholar 

  • Brown C (2001) Familiarity with the test environments improves escape responses in the crimson spotted rainbow fish Melanotaenia duboulayi. Anim Cog 4(2):109–113

    Article  Google Scholar 

  • Brown C, Braithwaite VA (2004) Effects of predation pressure on the cognitive ability of the poeciliid Brachyraphis episcopi. Behav Ecol 16:482–487

    Article  Google Scholar 

  • Carlson HR, Haight RE (1972) Evidence for a home site & homing of adult Yellowtail Rockfish, Sebastes flavidus. J Fish Res Board Can 29:1011–1014

    Article  Google Scholar 

  • Conradt L, Roper TJ, Thomas CD (2001) Dispersal behaviour of individuals in metapopulations of two British butterflies. Oikos 95:416–424

    Article  Google Scholar 

  • Costa SS, Andrade R, Carneiro LA, Gonçalves EJ, Kotrschal K, Oliveira RF (2011) Sex differences in the dorsolateral telencephalon correlate with home range size in blenniid fish. Brain Behav Evol 77:55–64

    Article  Google Scholar 

  • Gaulin SJC, Fitzgerald RW (1986) Sex differences in spatial ability: on evolutionary hypothesis and test. Am Nat 127:74–88

    Article  Google Scholar 

  • Gerking SD (1959) The restricted movement of fish populations. Biol Rev 34:221–242

    Article  Google Scholar 

  • Gibson RN (1999) Movement and homing in intertidal fishes. In: Horn MH, Martina KLM, Chotkowski MA (eds) Intertidal fishes, life in two worlds. Academic Press, USA, pp 97–125

    Chapter  Google Scholar 

  • Gommon MF, Bray DJ, Kuiter RH (2008) Fishes of Australia’s Southern Coast. New Holland

  • Green JM (1971) High tide movements and homing behaviour of the tide pool sculpin Oligacattus macullasus. J Fish Res Board Can 28:383–389

    Article  Google Scholar 

  • Griffiths SP (2003a) Rockpool ichthyofaunas of temperate Australia: species composition, residency and biogeographic patterns. Estuar Coast Shelf Sci 58:173–186

    Article  Google Scholar 

  • Griffiths SP (2003b) Homing behaviour of intertidal rock pool fishes in South-Eastern New South Wales, Australia. Aust J Zool 51:387–398

    Article  Google Scholar 

  • Grove JS, Lavenberg RJ (1997) The fishes of the Galápagos Islands. Standford University Press, California, p 513

    Google Scholar 

  • Hammilton WJ Jr (1937) Activity and home range of the field mouse, Microtus p. pennsylvanicus (Ord.). Ecology 18:255–263

    Article  Google Scholar 

  • Healy S (1998) Spatial representation in animals. Oxford University Press, Oxford

    Google Scholar 

  • Healy S, Braithwaite V (2000) Cognitive ecology: a field of substance? Trends Ecol Evol 15:22–26

    Article  Google Scholar 

  • Khoo HW (1974) Sensory basis of homing in intertidal fish Oligocottus maculosus Girard. Can J Zool 52:1023–1029

    Article  CAS  Google Scholar 

  • Kolm N, Hoffman EA, Olsson J, Berglund A, Jones AG (2005) Group stability and homing behavior but no kin group structures in a coral reef fish. Behav Ecol 16:521–527

    Google Scholar 

  • Komers PE (1996) Obligate monogamy without paternal care in Kirk’s dikdik. Anim Behav 51:131–140

    Article  Google Scholar 

  • Kuiter RH (1996) Guide to sea fishes of Australia. New Holland.pp 433

  • Letty J, Aubineau J, Marchandeau S, Clobert J (2003) Effect of translocation on survival in wild rabbit (Oryctlagus cuniculus). Mamm Biol 68:250–255

    Google Scholar 

  • Limpus CJ, Miller JD, Parmenter CJ, Reimer D, Mclachlan N, Webb R (1992) Migration of green (Chelonia mydas) and loggerhead (Caretta caretta) turtles to and from eastern Australian rookeries. Wildl Res 19:347–358

    Article  Google Scholar 

  • Marine Technology, Inc. (2010) VIE manual injection kits. Northwest Marine Technology, Inc. http://www.nmt.us/products/vie/vie.shtml. Accessed 22 June 2012

  • Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24(159):175

    Google Scholar 

  • McGrouther M (2012) Fishes of Sydney Harbour. Australian Museum. http://australianmuseum.net.au/Fishes-of-Sydney-Harbour. Accessed 22 June 2012

  • Milner AM (1987) Colonization and ecological development of new streams in Glacier Bay National Park Alaska. Freshw Biol 18:53–70

    Article  Google Scholar 

  • Milner AM, Bailey RG (1989) Salmonid colonization of new streams in Glacier Bay National Park Alaska. Aquac Fish Manage 20:179–192

    Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003) The influence of habitat stability on landmark use during spatial learning in the three-spined stickleback. Anim Behav 65:701–707

    Article  Google Scholar 

  • Papi F (1992) General aspects. In: Papi F (ed) Animal homing. Chapman and Hall, London, pp 1–18

    Chapter  Google Scholar 

  • Part T (1995) The importance of local familiarity and search costs for age-biased and sex-biased philopatry in the collared flycatcher. Anim Behav 49:1029–1038

    Article  Google Scholar 

  • Piper WH (2011) Making habitat selection more familiar: a review. Behav Ecol Sociobiol 65:1329–1351

    Article  Google Scholar 

  • Reinert HK, Rupert RRJ (1999) Impacts of translocation on behavior and survival of timber rattlesnakes, Crotalus horridus. J Herpetol 33:45–61

    Article  Google Scholar 

  • Stephens JS, Johnson RK Jr, Key GS, McCosker JE (1970) The comparative ecology of three sympatric species of California blennies of the genus Hypsoblennius Gill (Teleostomi, Blennidae). Ecol Monogr 40:213–233

    Article  Google Scholar 

  • Stimson J (1970) Terrritorial behavior of the owl limpet, Lottia gigantea. Am Nat 157:154–169

    Google Scholar 

  • Valle CF (1989) Homing behaviour and intertidal movement of the opaleye, Girella nigricans, (Pisces: Kyphosidae). Marine Science thesis, California State University, California

  • Welsh HH, Droege S (2001) A case for using plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests. Conserv Biol 15:558–569

    Article  Google Scholar 

  • Williams GC (1957) Homing behaviour of California rocky shore fishes. Univ Calif Publ Zool 59:249–284

    Google Scholar 

  • Yoshiyama RM, Gaylord KB, Philippart MT, Moore TR, Jordan JR, Coon CC, Schalk LL, Valpey CJ, Tosques I (1992) Homing behaviour and site fidelity in intertidal sculpins (Pisces: Cottidae). J Exp Mar Biol Ecol 160:115–130

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks are due to Anthony C. Gill for help with fish identification, Emilie Theurant, Maxime Lalire and Gary White for assistance with fieldwork, Martin Whiting and anonymous reviewers for comments on manuscript and Macquarie University for providing the funds necessary to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Culum Brown.

Additional information

Communicated by M. A. Peck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, G.E., Brown, C. Site fidelity and homing behaviour in intertidal fishes. Mar Biol 160, 1365–1372 (2013). https://doi.org/10.1007/s00227-013-2188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-013-2188-6

Keywords

Navigation