Skip to main content
Log in

Trophic role of small cyclopoid copepod nauplii in the microbial food web: a case study in the coastal upwelling system off central Chile

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Copepod grazing impact on planktonic communities has commonly been underestimated due to the lack of information on naupliar feeding behaviour and ingestion rates. That is particularly true for small cyclopoid copepods, whose nauplii are mainly in the microzooplankton size range (<200 μm). The trophic role of Oithona spp. nauplii was investigated off Concepción (central Chile, ~36°S) during the highly productive upwelling season, when maximum abundances of these nauplii were expected. Diet composition, ingestion rates, and food-type preferences were assessed through grazing experiments with different size fractions of natural planktonic assemblages (<3, <20, <100, and <125 μm) and cultures of the nanoflagellate Isochrysis galbana. When the Oithona spp. nauplii were offered a wide range of size fractions as food (pico- to microplankton), they mostly ingested small (2–5 μm) nanoflagellates (5–63 × 103 cells nauplius−1 day−1). No ingestion on microplankton was detected, and picoplankton was mainly ingested when it was the only food available. Daily carbon (C) uptake by the nauplii ranged between 28 and 775 ng C nauplius−1, representing an overall mean of 378% of their body C. Our relatively high ingestion rate estimates can be explained by methodological constraints in previous studies on naupliar feeding, including those dealing with “over-crowding” and “edge” effects. Overall, the grazing impact of the Oithona spp. nauplii on the prey C standing stocks amounts up to 21% (average = 13%) for picoplankton and 54% (average = 28%) for nanoplankton. These estimates imply that the nauplii of the most dominant cyclopoid copepods exert a significant control on the abundances of nanoplankton assemblages and, thereby, represent an important trophic link between the classical and microbial food webs in this coastal upwelling system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarcón G (2008) Variabilidad estacional de la comunidad picoplanctónico en una zona de surgencia altamente productiva. Master thesis, University of Concepción, Chile

  • Atienza D, Calbet A, Saiz E, Alcaraz M, Trepat I (2006) Trophic impact, metabolism, and biogeochemical role of the marine cladoceran Penilia avirosteis and the co-dominant copepod Oithona nana in NW Mediterranean coastal waters. Mar Biol 150:221–235

    Article  CAS  Google Scholar 

  • Berggreen U, Hansen B, Kiøoboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol 99:341–352

    Article  Google Scholar 

  • Børsheim KY, Bratbak G (1987) Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171–175

    Article  Google Scholar 

  • Böttjer D, Morales CE (2005) Microzooplankton grazing in a coastal embayment off Concepción, Chile, (36°S) during non-upwelling conditions. J Plankton Res 27:383–391

    Article  CAS  Google Scholar 

  • Böttjer D, Morales CE (2007) Nanoplanktonic assemblages in the upwelling area off Concepción (36°S), central Chile: abundance, biomass, and grazing potential during the annual cycle. Prog Oceanogr 75:415–434

    Google Scholar 

  • Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol 35:65–78

    Article  Google Scholar 

  • Brucet S, Compte J, Boix D, López-Flores R, Quintana XD (2008) Feeding of nauplii, copepodites and adults of Calanipeda aquaedulcis (Calanoida) in Mediterranean salt marshes. Mar Ecol Prog Ser 355:183–191

    Article  Google Scholar 

  • Calbet A, Landry MR, Scheinberg DR (2000) Copepod grazing in a subtropical bay: species-specific responses to a midsummer increase in nanoplankton standing stock. Mar Ecol Prog Ser 193:75–84

    Article  Google Scholar 

  • Campbell RG (1993) Studies of feeding behaviour, development, and food limitation in first feeding nauplii of the copepod Acartia tonsa (Copepoda: Calanoida). Dissertation, University of Rhode Island, USA

  • Castellani C, Irigoien X, Harris RP, Lampitt RS (2005) Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Prog Ser 288:173–182

    Article  Google Scholar 

  • Castellani C, Irigoien X, Mayor DJ, Harris RP, Wilson D (2008) Feeding of Calanus finmarchicus and Oithona similis on the microplankton assemblage in the Irminger Sea, North Atlantic. J Plankton Res 30:1095–1116

    Article  CAS  Google Scholar 

  • Christaki U, Jacquet S, Dolan JR, Vaulot D, Rassoulzadegan F (1999) Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol Oceanogr 44:52–61

    Google Scholar 

  • Christaki U, Vazquez-Dominguez E, Couties C, Lebaron P (2005) Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Osterococcus tarui) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Environ Microbiol 7:1200–1210

    Article  PubMed  Google Scholar 

  • Escribano R, Hidalgo P, González H, Giesecke R, Riquelme-Bugueño R, Manríquez K (2007) Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile. Prog Oceanogr 75:470–485

    Article  Google Scholar 

  • Fernandez F (1979) Nutritional studies in the nauplius larva of Calanus pacificus (Copepoda: Calanoida). Mar Biol 53:131–147

    Article  CAS  Google Scholar 

  • Finlay K, Roff JC (2006) Ontogenetic growth rate responses of temperate marine copepods to chlorophyll concentration and light. Mar Ecol Prog Ser 313:145–156

    Article  CAS  Google Scholar 

  • Frost BW (1972) Impacts of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Article  Google Scholar 

  • Gallienne CP, Robins DB (2001) Is Oithona the most important copepod in the world’s oceans? J Plankton Res 23:1421–1432

    Article  Google Scholar 

  • Gifford DJ (1993) Consumption of protozoa by copepods feeding on natural microplankton assemblages. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publisher, Boca Raton, pp 723–729

    Google Scholar 

  • Gifford SM, Rollwagen-Bollens G, Bollens SM (2007) Mesozooplankton omnivory in the upper San Francisco Bay. Mar Ecol Prog Ser 348:33–46

    Article  CAS  Google Scholar 

  • Hansen B, Bjørnsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403

    Google Scholar 

  • Hansen FC, Witte JH, Passarge J (1996) Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells. Aquat Microb Ecol 10:307–313

    Article  Google Scholar 

  • Haq SM (1965) The larval development of Oithonina nana. J Zool 146:555–566

    Article  Google Scholar 

  • Henriksen CI, Saiz E, Calbet A, Hansen BW (2007) Feeding activity and swimming patterns of Acartia grani and Oithona davisae nauplii in the presence of motile and non-motile prey. Mar Ecol Prog Ser 331:119–129

    Article  Google Scholar 

  • Ichinotsuka D, Ueno H, Nakano S (2006) Relative importance of nanoflagellates and ciliates as consumers of bacteria in a coastal sea area dominated by oligotrichous Strombidium and Strobilidium. Aquat Microb Ecol 42:139–147

    Article  Google Scholar 

  • Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rate of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Google Scholar 

  • Irigoien X, Titelman J, Harris RP, Harbour D, Castellani C (2003) Feeding of Calanus finmarchicus nauplii in the Irminger Sea. Mar Ecol Prog Ser 262:193–200

    Article  Google Scholar 

  • Isma SMH, Hansen T, Sommer U (2008) Effect of food concentration and type of diet on Acartia survival and naupliar development. Mar Biol 154:335–343

    Article  Google Scholar 

  • Kattner G, Albers C, Graece M, Schnack-Schiel SB (2003) Fatty acid and alcohol composition of the small polar copepods Oithona and Oncaea: indication on feeding modes. Polar Biol 26:666–671

    Article  Google Scholar 

  • Köster M, Krause C, Paffenhöfer G-A (2008) Time-series measurements of oxygen consumption of copepod nauplii. Mar Ecol Prog Ser 353:157–164

    Article  CAS  Google Scholar 

  • Lampitt RS, Gamble JC (1982) Diet and respiration of the small planktonic marine copepod Oithona nana. Mar Biol 66:185–190

    Article  Google Scholar 

  • Lee RF, Nevenzel JC, Paffenhöfer G-A (1972) The presence of wax esters in marine planktonic copepods. Naturwiss 59:406–411

    Article  CAS  Google Scholar 

  • Li A, Stoecker DK, Waybe D (2001) Use of the food vacuole content method to estimate grazing by the mixotrophic dinoflagellate Gyrodinium galatheanum on cryptophytes. J Plankton Res 23:303–318

    Article  Google Scholar 

  • Lonsdale DJ, Jónasdóttir SH (1990) Geographic variation in naupliar growth and survival in a harpacticoid copepod. Biol Bull 179:113–120

    Article  Google Scholar 

  • Lonsdale DJ, Cosper EM, Kim W-S, Doall M, Divadeenam A, Jónasdóttir SH (1996) Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Mar Ecol Prog Ser 134:247–263

    Article  Google Scholar 

  • Lonsdale DJ, Caron DA, Dennett MR, Schaffner R (2000) Predation by Oithona spp. on protozooplankton in the Ross Sea, Antarctica. Deep-Sea Res II 47:3273–3283

    Article  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Academic Press, San Diego

    Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationship for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579

    Article  CAS  Google Scholar 

  • Meyer B, Irigoien X, Graeve M, Head RN, Harris RP (2002) Feeding rates and selectivity among nauplii, copepodites and adult females of Calanus finmarchicus and Calanus helgolandicus. Helgol Mar Res 56:169–176

    Article  Google Scholar 

  • Nakamura Y, Turner JT (1997) Predation and respiration by the small cyclopoid copepod Oithona similis: how important is feeding on ciliates and heterotrophic flagellates? J Plankton Res 19:1275–1288

    Article  Google Scholar 

  • O’Brien WJ (1988) The effect of container size on the feeding rate of Heterocope septentrionalis, a freshwater predaceous copepod. J Plankton Res 10:313–317

    Article  Google Scholar 

  • Paffenhöfer G-A (1971) Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helgolandicus. Mar Biol 11:286–298

    Article  Google Scholar 

  • Paffenhöfer G-A (1998) On the relation of structure, perception and activity in marine planktonic copepods. J Mar Syst 15:457–473

    Article  Google Scholar 

  • Peters F (1994) Prediction of planktonic protistan grazing rates. Limnol Oceanogr 39:195–206

    Article  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Roff JC, Turner JT, Webber MK, Hopcroft PR (1995) Bacterivory by tropical copepod nauplii: extent and possible significance. Aquat Microb Ecol 9:165–175

    Article  Google Scholar 

  • Sabatini M, Kiørboe T (1994) Egg production, growth and development of the cyclopoid copepod Oithona similis. J Plankton Res 16:1329–1351

    Article  Google Scholar 

  • Saiz E, Calbet A (2007) Scaling of feeding in marine calanoid copepods. Limnol Oceanogr 52:668–675

    Article  Google Scholar 

  • Sherr BF, Sherr EB, Rassoulzadegan F (1988) Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl Environ Microbiol 54:1091–1095

    PubMed  CAS  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213

    Article  CAS  Google Scholar 

  • Smith JK, Lonsdale DJ, Gobler CJ, Caron DA (2008) Feeding behaviour and development of Acartia tonsa nauplii on the brown tide alga Aureococcus anophagefferens. J Plankton Res 30:937–950

    Article  Google Scholar 

  • Stoecker DK, Egloff DA (1987) Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J Exp Mar Biol Ecol 110:53–68

    Article  Google Scholar 

  • Sun J, Lui D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346

    Article  Google Scholar 

  • Tang KW, Jakobsen HH, Visser AW (2001) Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: feeding, growth, and trophic interactions among grazers. Limnol Oceanogr 46:1860–1870

    Article  Google Scholar 

  • Torres CA (2006) Desarrollo y crecimiento de estadíos naupliares del copépodo ciclopódico Oithona nana en condiciones experimentales: influencia de la calidad de la dieta. Master thesis, University of Concepción, Chile

  • Torres CG, Escribano R (2003) Growth and development of Calanus chilensis nauplii reared under laboratory conditions: testing the effects of temperature and food resources. J Exp Mar Biol Ecol 294:81–99

    Article  Google Scholar 

  • Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266

    Google Scholar 

  • Turner JT, Tester PA (1992) Zooplankton feeding ecology: bacterivory by metazoan microzooplankton. J Exp Mar Biol Ecol 160:149–167

    Article  Google Scholar 

  • Turner JT, Levinsen H, Nielsen TG, Hansen BW (2001) Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Mar Ecol Prog Ser 221:209–219

    Article  Google Scholar 

  • Uchima M, Hirano R (1986) Food of Oithona davisae (Copepoda: Cyclopoida) and the impact of food concentration at first feeding on the larval growth. Bull Plankton Soc Japan 33:21–28

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der qualitativen Phytoplankton—Methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Vanderploeg AH, Scavia D (1979) Two electivity indices for feeding with special reference to zooplankton grazing. J Fish Res Board Can 36:362–365

    Google Scholar 

  • Vargas CA, González HE (2004a) Plankton community structure and carbon cycling in a coastal upwelling system. I. Bacteria, microprotozoans and phytoplankton in the diet of copepods and appendicularians. Aquat Microb Ecol 34:151–164

    Article  Google Scholar 

  • Vargas CA, González HE (2004b) Plankton community structure and carbon cycling in a coastal upwelling system. II. Microheterotrophic pathways. Aquat Microb Ecol 34:165–180

    Article  Google Scholar 

  • Vargas CA, Martínez RA, Cuevas LA, Pavez MA, Cartes C, González HE, Escribano R, Daneri G (2007) The relative importance of microbial and classical food webs in a highly productive coastal upwelling area. Limnol Oceanogr 52:1495–1510

    Google Scholar 

  • Verity PG, Stoecker DK, Sieracki ME, Nelson JR (1993) Grazing, growth, and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47°N, 18°W. Deep-Sea Res II 40:1793–1814

    Article  Google Scholar 

  • White JR, Roman MR (1992) Seasonal study of grazing by metazoan zooplankton in the mesohaline Chesapeake Bay. Mar Ecol Prog Ser 86:251–261

    Article  Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank the crew of the RV Kay Kay (U. de Concepción, Chile), especially J. Caamaño, for assistance during field trips and sampling. C. Torres and Dr. P. Hidalgo (COPAS Center, U. de Concepción, Chile) helped in planning the experiments and picking up adult oithonids. Dr. C. Vargas (EULA, U. of Concepción, Chile) advised on the calculations of ingestion rates and trophic cascading. Dr. A. G. Davies (MBA, UK) is acknowledged for language corrections. Two anonymous reviewers made very useful comments on an earlier version of this MS. D. B. was supported by a doctoral scholarship from the DAAD (German Academic Exchange Service) during this study. This research was financed by the FONDAP Program (CONICYT, Chile) awarded to the COPAS Centre (Project #150100007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Böttjer.

Additional information

Communicated by X. Irigoien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttjer, D., Morales, C.E. & Bathmann, U. Trophic role of small cyclopoid copepod nauplii in the microbial food web: a case study in the coastal upwelling system off central Chile. Mar Biol 157, 689–705 (2010). https://doi.org/10.1007/s00227-009-1353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1353-4

Keywords

Navigation