, Volume 153, Issue 2, pp 171-178

Temperature cues gametogenesis and larval release in a tropical sponge

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Determining the reproductive processes of benthic invertebrates is central to our understanding of their recruitment and population dynamics. Sexual reproduction of the gonochoric and viviparous Great Barrier Reef sponge, Luffariella variabilis (Poléjaeff 1884) was quantified from histological samples collected over two reproductive seasons (2004 and 2005). Gametogenesis commenced for females at a water temperature of 21°C, the lowest water temperature of the year. Spermatogenesis occurred above 22.5°C with sperm asynchronously developed and released from August or September to October. Oocytes developed asynchronously from July to September, embryos from September to December, and larvae from November to December. Female reproduction terminated in December (after larval release) prior to the highest mean annual water temperature of 30°C in January. There was a significant (35%) decrease in female reproductive output in 2005 compared to 2004, as measured by the reproductive index (0.68 ± 0.12 female reproductive propagules mm−2 of mesohyl in 2005 compared with 1.05 ± 0.10 mm−2 in 2004). This corresponded with delayed oogenesis and spermatogenesis, and a shortened larval development cycle corresponding with a delayed minimum temperature (21°C) in August of 2005 compared with July 2004. Accordingly, the maximum percentage of the mesohyl occupied by female reproductive propagules (eggs, embryos and larvae) was also reduced by 60% in 2005 (overall mean of 13.04% in October 2004 compared with 5.35% in October 2005). However, the mean sizes of individual female propagules remained the same from year to year. Males in contrast, showed no overall difference in either reproductive index or percentage occupation of the mesohyl between 2004 and 2005. The lowered reproductive output (∼35%) of females of L. variabilis associated with delayed minimum water temperatures may have important implications for population reproductive success where oogenesis and spermatogenesis and larval release are cued by minimum and maximum water temperatures, respectively.

Communicated by S.D. Connell.