Skip to main content
Log in

Genetic sub-structure and intermediate optimal outcrossing distance in the marine angiosperm Zostera marina

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The spatial distribution of genetic variability depends on the spatial patterns of clonal and sexual reproduction, gene flow, genetic drift and natural selection. Species with restricted dispersal may exhibit genetic structuring within populations with immediate neighbours being close relatives, and may show differentiation among populations. Genetic structuring of a species may have important genetic, evolutionary and ecological consequences including distance-dependent mating success. In this study we used microsatellite markers to show that clones of Zostera marina in a population in the Ria Formosa, Portugal, were aggregated and covered distances of up to 3–4 m. Clones within 4 m of each other exhibited significant and positive coancestry values, reflecting the limited seed dispersal of this species. Hand-pollinations between near (0–10.9 m), intermediate (11–32 m) and far (15 km) individuals resulted in similar levels of seed set, although the near pollinations had higher, although not statistically significant, levels of seed abortion during maturation. Seeds from intermediate-distance pollinations had a significantly higher proportion of seeds germinate and shorter germination time than both the near and far seeds. Similarly, the average number of seedlings produced per pollination, used as an overall estimate of fitness, was significantly greater for the intermediate distance when compared to both near and far pollinations. These results suggest that the genetic structuring observed may result in both inbreeding and outbreeding depression, which gives rise to an intermediate optimal outcrossing distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Alberto F, Gouveia L, Arnaud-Haond S, Pérez-Lloréns JL, Duarte CM, Serrão EA (2005) Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Mol Ecol 14:2669–2681

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GENECLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Billingham MR, Reusch TBH, Alberto F, Serrão EA (2003) Is asexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. Mar Ecol Prog Ser 265:77–83

    Article  Google Scholar 

  • Busch JW (2005) Inbreeding depression in self-compatible and self-incompatible populations of Leavenworthia alabamica. Heredity 94:159–165

    Article  CAS  Google Scholar 

  • Bush RM, Smouse PE (1992) Evidence for adaptive significance of allozymes in forest trees. New Forests 6:179–196

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Cox PA, Laushman R, Ruckelhaus M (1992) Surface and submarine pollination in the seagrass Zostera marina L. Biol J Linn Soc Lond 109:281–291

    Google Scholar 

  • de Cock AWAM (1980) Flowering, pollination and fruiting in Zostera marina L. Aquat Bot 9:201–220

    Article  Google Scholar 

  • de Nettancourt D (1977) Incompatibility in angiosperms. Sex Plant Reprod 10:185–199

    Article  Google Scholar 

  • den Hartog C (1970) The seagrasses of the world. Verhandelingen Koninklijk Nederlands Akademie Wetenschapen Afdeling Natuurkundle II 59:1–275

    Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, Princeton

    Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longman, London

    Google Scholar 

  • Fenster CB (1991) Effect of male pollen donor and female seed parent on allocation of resources to developing seeds and fruit in Chamaecrista fasciculata (Leguminosae). Am J Bot 78:13–23

    Article  Google Scholar 

  • Hämmerli A, Reusch TBH (2002) Local adaptation and transplant dominance in genets of the marine clonal plant Zostera marina. Mar Ecol Prog Ser 242:111–118

    Article  Google Scholar 

  • Hämmerli A, Reusch TBH (2003a) Flexible mating: cross-pollination affects sex-expression in a marine clonal plant. J Evol Biol 16:1096–1105

    Article  Google Scholar 

  • Hämmerli A, Reusch TBH (2003b) Genetic neighbourhood of clone structures in eelgrass meadows quantified by spatial autocorrelation of microsatellite markers. Heredity 91:448–455

    Article  Google Scholar 

  • Hämmerli A, Reusch TBH (2003c) Inbreeding depression influences genet size distribution in a marine angiosperm. Mol Ecol 12:619–629

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Hardner CM, Potts BM, Gore PL (1998) The relationship between cross success and spatial proximity of Eucalyptus globulus ssp. globulus parents. Evolution 52:614–618

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hauser TP, Loeschcke V (1994) Inbreeding depression and mating-distance dependent offspring fitness in large and small populations of Lychnis flos-cuculi (Caryophyllaceae). J Evol Biol 7:609–622

    Article  Google Scholar 

  • Heiser DA, Shaw RC (2006) The fitness effects of outcrossing in Calyophus serrulatas, a permanent translocation heterozygote. Evolution 60:64–76

    Article  Google Scholar 

  • Hootsmans MJM, Vermaat JE, van Vierssen W (1987) Seed-bank development, germination and early seedling survival of two seagrass species from the Netherlands: Zostera marina L. and Zostera noltii Hornem. Aq Bot 28:275–285

    Article  Google Scholar 

  • Jain SK, Bradshaw AD (1966) Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21:407–441

    Article  Google Scholar 

  • Kudoh H, Whigman DF (1997) Microgeographic genetic structure and gene flow in Hibiscus moscheutos (Malvaceae) populations. Am J Bot 84:1285–1293

    Article  CAS  Google Scholar 

  • Leonardi S, Raddi S, Borghetti M (1996) Spatial autocorrelation of allozyme traits in a Norway spruce (Picea abies) population. Can J For Res 26:63–71

    Article  CAS  Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220

    Google Scholar 

  • Loiselle BA, Sork VL, Nason JD, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Moore KA, Orth RJ, Nowak JF (1993) Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: effects of light, oxygen and sediment burial. Aq Bot 45:79–81

    Article  Google Scholar 

  • Nason JD, Aldrich PR, Hamrick JL (1997) Dispersal and the dynamics of genetic structure in fragmented tropical tree populations. In: Laurence WF, Bierregaard RO (eds) Tropical forest remnants: ecology, management and conservation of fragmented communities. University of Chicago Press, Chicago, pp 304–320

    Google Scholar 

  • Orth RJ, Luckenbach M, Moore KA (1994) Seed dispersal in a marine macrophyte: implications for colonization and restoration. Evolution 75:1927–1939

    Google Scholar 

  • Phillips RC, Grant WS, McRoy CP (1983) Reproductive strategies of eelgrass (Zostera marina L.). Aq Bot 16:1–20

    Article  Google Scholar 

  • Phillips RC, Meñez EG (1988) Seagrasses. Smithsonian contributions to the marine sciences, Number 34, Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Price MV, Waser NM (1979) Pollen dispersal and optimal outcrossing in Delphinium nelsonii. Nature 277:294–297

    Article  Google Scholar 

  • Reusch TBH (2000) Five microsatellite loci in eelgrass Zostera marina and a test of cross-species amplification in Z. noltii and Z. japonica. Mol Ecol 9:371–373

    Article  CAS  Google Scholar 

  • Reusch TBH (2001) Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J Evol Biol 14:129–138

    Article  CAS  Google Scholar 

  • Reusch TBH (2002) Microsatellites reveal high population connectivity in eelgrass (Zostera marina) in two contrasting coastal areas. Limnol Oceanogr 47:78–85

    Article  Google Scholar 

  • Reusch TBH, Stam WT, Olsen JL (1999) Microsatellite loci in eelgrass Zostera marina reveal marked polymorphism within and among populations. Mol Ecol 8:317–321

    Article  CAS  Google Scholar 

  • Reusch TBH, Stam WT, Olsen JL (2000) A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol Ecol 9:127–140

    Article  CAS  Google Scholar 

  • Rhode JM, Duffy JE (2004) Seed production from the mixed mating system of Chesapeake Bay (USA) eelgrass (Zostera marina; Zosteraceae). Am J Bot 91:192–197

    Article  Google Scholar 

  • Ruckelhaus MH (1994) Ecological and genetic factors affecting population structure in the marine angiosperm Zostera marina L. Ph.D. Dissertation, University of Washington

  • Ruckelhaus MH (1995) Estimates of outcrossing rates and of inbreeding depression in a population of the marine angiosperm Zostera marina. Mar Biol 123:583–593

    Article  Google Scholar 

  • Ruckelhaus MH (1996) Estimation of genetic neighborhood parameters from pollen and seed dispersal in the marine angiosperm Zostera marina L. Evolution 50:856–864

    Article  Google Scholar 

  • Ruckelhaus MH (1998) Spatial scale of genetic structure and an indirect estimate of gene flow in eelgrass, Zostera marina. Evolution 52:330–343

    Article  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219

    Article  Google Scholar 

  • Shields WM (1982) Philopatry, inbreeding, and the evolution of sex. State University of New York Press, Albany

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  Google Scholar 

  • Stacy EA (2001) Cross-fertility in two tropical tree species: evidence of inbreeding depression within populations and genetic divergence among populations. Am J Bot 88:1041–1051

    Article  CAS  Google Scholar 

  • Waser NM (1987) Spatial heterogeneity in a population of the montane perennial plant Delphinium nelsonii. Heredity 58:249–256

    Article  Google Scholar 

  • Waser NM (1993) Population structure, optimal outbreeding, and assortative mating in angiosperms. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press, Chicago, pp 173–199

    Google Scholar 

  • Waser NM, Price MV (1989) Optimal outcrossing in Ipomopsis aggregata: seed set and offspring fitness. Evolution 43:1097–1109

    PubMed  Google Scholar 

  • Waser NM, Price MV (1994) Crossing-distance effects in Delphinium nelsonii: outbreeding and inbreeding depression in progeny fitness. Evolution 48:842–852

    PubMed  Google Scholar 

  • Willi Y, van Buskirk J (2005) Genomic compatibility occurs over a wide range of parental genetic similarity in an outcrossing plant. Proc Royal Soc B 272:1333–1338

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4. Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

We thank S. Lopes, C. B. Capela and A. L. Quaresma at the Parque Natural de Ria Formosa for boat logistics. Thanks also to A. Hämmerli and C. Perrin for comments on an earlier version of the manuscript. This work was supported by FCT (Portugal) and ESF (European Social Fund) fellowships to MRB, the EU project EVK3-CT-2000-00044–Monitoring and Management of European Seagrass Beds (M&MS) and the FCT (Portugal) project PNAT/1999/BIA/15003/C and complies with the current laws in Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Billingham.

Additional information

Communicated by S. A. Poulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billingham, M.R., Simões, T., Reusch, T.B.H. et al. Genetic sub-structure and intermediate optimal outcrossing distance in the marine angiosperm Zostera marina . Mar Biol 152, 793–801 (2007). https://doi.org/10.1007/s00227-007-0730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0730-0

Keywords

Navigation