Theory of Computing Systems

, Volume 35, Issue 1, pp 81–93

Computing Complete Graph Isomorphisms and Hamiltonian Cycles from Partial Ones

  • A. Groß e
  • J. Rothe
  • G. Wechsung
Article

DOI: 10.1007/s00224-001-1048-9

Cite this article as:
Groß e, A., Rothe, J. & Wechsung, G. Theory Comput. Systems (2002) 35: 81. doi:10.1007/s00224-001-1048-9

Abstract.

We prove that computing a single pair of vertices that are mapped onto each other by an isomorphism φ between two isomorphic graphs is as hard as computing φ itself. This result optimally improves upon a result of Gál, Halevi, Lipton, and Petrank. We establish a similar, albeit slightly weaker, result about computing complete Hamiltonian cycles of a graph from partial Hamiltonian cycles.

Copyright information

© Springer-Verlag New York 2002

Authors and Affiliations

  • A. Groß e
    • 1
  • J. Rothe
    • 2
  • G. Wechsung
    • 1
  1. 1.Institut für Informatik, Friedrich-Schiller-Universität Jena, \{grosse, wechsung\}@informatik.uni-jena.deDE
  2. 2.Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, rothe@cs.uni-duesseldorf.deDE