, Volume 59, Issue 5, pp 392-396
Date: 21 Feb 2014

Inflammatory Response to Implant Particulates in a Macrophage/Osteoblast Coculture Model

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

The purpose of this study was to further define the cellular response to titanium and polymethylmethacrylate (PMMA) particles in aseptic loosening, and to determine if the use of pamidronate may be effective in inhibiting bone resorption associated with this response. Macrophages and osteoblasts were cocultured to simulate the environment around an aseptically loose prosthesis. Macrophages were plated on the bottom of six well plates and osteoblasts were plated on culture dish inserts, and placed into the wells with the macrophages. Incubation of macrophages with PMMA in this system led to release of prostaglandin E (PGE2), granulocyte macrophage-colony stimulating factor (GM-CSF), and interleukin-6 (IL-6). Incubation with titanium led to release of tumor necrosis factor (TNF) and IL-6. Exposure of calvaria to media from cells exposed to either PMMA or titanium led to release of calcium 45. Incubation of calvaria with pamidronate was able to inhibit release of calcium 45 associated with exposure to the macrophage/osteoblast/particle conditioned medium. Bone resorption at the interface between implant and bone is a consistent feature leading to loosening of orthopedic implants. By inhibiting bone resorption associated with the inflammatory response to implant particulates, pamidronate or other bisphosphonates may have clinical utility in the treatment or prevention or aseptic loosening.

Received: 22 December 1995 / Accepted: 3 May 1996