Skip to main content
Log in

The index of an algebraic variety

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let K be the field of fractions of a Henselian discrete valuation ring \({{\mathcal {O}}_{K}}\). Let X K /K be a smooth proper geometrically connected scheme admitting a regular model \(X/{{\mathcal {O}}_{K}}\). We show that the index δ(X K /K) of X K /K can be explicitly computed using data pertaining only to the special fiber X k /k of the model X.

We give two proofs of this theorem, using two moving lemmas. One moving lemma pertains to horizontal 1-cycles on a regular projective scheme X over the spectrum of a semi-local Dedekind domain, and the second moving lemma can be applied to 0-cycles on an \(\operatorname {FA} \)-scheme X which need not be regular.

The study of the local algebra needed to prove these moving lemmas led us to introduce an invariant γ(A) of a singular local ring \((A, {\mathfrak {m}})\): the greatest common divisor of all the Hilbert-Samuel multiplicities e(Q,A), over all \({\mathfrak {m}}\)-primary ideals Q in \({\mathfrak {m}}\). We relate this invariant γ(A) to the index of the exceptional divisor in a resolution of the singularity of \(\operatorname {Spec}A\), and we give a new way of computing the index of a smooth subvariety X/K of \({\mathbb{P}}^{n}_{K}\) over any field K, using the invariant γ of the local ring at the vertex of a cone over X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Recall that a ring A of finite Krull dimension is equidimensional if \(\dim A/{\mathfrak {p}}=\dim A\) for every minimal prime ideal \({\mathfrak {p}}\) of A. A point xX is equidimensional if \({\mathcal{O}}_{X,x}\) is.

  2. It should be noted that the definition of e(Q,M) taken in [42], page 107, (or in [53], 11.1.5) is different from the definition taken at the beginning of this section and in [7], VIII.72. Thus the statement of [42], 14.6, cannot be applied directly.

  3. Due to the two different definitions of e(Q,M), the proof of [42], 14.11, needs to be slightly adjusted to prove the second equality.

  4. See [23] IV.13.2.2, with a correction in [23] (Err IV, 34) on pp. 356–357 of no. 32.

  5. The case of inseparable extensions requires careful consideration (see for instance the Notes on page 230 of [17]). We also note that Proposition 5.2 in Chapter 9 of [35], page 240, requires further hypotheses to ensure that the element y in its proof exists.

References

  1. Artin, M.: Left ideals in maximal orders. In: Brauer Groups in Ring Theory and Algebraic Geometry, Wilrijk, 1981. Lecture Notes in Math., vol. 917, pp. 182–193. Springer, Berlin (1982)

    Chapter  Google Scholar 

  2. Bennett, B.: On the characteristic functions of a local ring. Ann. Math. 91, 25–87 (1970)

    Article  MATH  Google Scholar 

  3. Bennett, B.: On the structure of non-excellent curve singularities in characteristic p. Publ. Math. Inst. Hautes Études Sci. 42, 129–170 (1973)

    Article  Google Scholar 

  4. Bosch, S., Liu, Q.: Rational points of the group of components of a Néron model. Manuscr. Math. 98, 275–293 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Math., 3. Folge, vol. 21. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  6. Bourbaki, N.: Commutative Algebra. Elements of Mathematics. Springer, Berlin (1998). Chapters 1–7, Translated from the French. Reprint of the 1989 English translation

    Google Scholar 

  7. Bourbaki, N.: Algèbre Commutative. Springer, Berlin (2006). Chapitres 8 et 9, Reprint of the 1983 original

    Google Scholar 

  8. Boutot, J.-F.: Schéma de Picard Local. Lecture Notes in Math., vol. 632. Springer, Berlin (1978)

    MATH  Google Scholar 

  9. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Adv. Math., vol. 39. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  10. Clark, P.: On the indices of curves over local fields. Manuscr. Math. 124(4), 411–426 (2007)

    Article  MATH  Google Scholar 

  11. Clark, P.: The period-index problem in WC-groups IV: a local transition theorem. J. Théor. Nr. Bordx. 22(3), 583–606 (2010)

    Article  MATH  Google Scholar 

  12. Colliot-Thélène, J.-L.: Un théorème de finitude pour le groupe de Chow des zéro-cycles d’un groupe algébrique linéaire sur un corps p-adique. Invent. Math. 159(3), 589–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colliot-Thélène, J.-L., Saito, S.: Zéro-cycles sur les variétés p-adiques et groupe de Brauer. Int. Math. Res. Not. 4, 151–160 (1996)

    Article  Google Scholar 

  14. Consani, C.: A moving-lemma for a singular variety and applications to the Grothendieck group K 0(X). In: Algebraic K-theory Commutative Algebra, and Algebraic Geometry, Santa Margherita Ligure, 1989. Contemp. Math., vol. 126, pp. 21–45. Am. Math. Soc., Providence (1992)

    Chapter  Google Scholar 

  15. Coray, D., Manoil, C.: On large Picard groups and the Hasse principle for curves and K3 surfaces. Acta Arith. 76, 165–189 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Ferrand, D.: Conducteur, descente et pincement. Bull. Soc. Math. Fr. 131(4), 553–585 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Fried, M., Jarden, M.: Field Arithmetic, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 11. Springer, Berlin (2008). Revised by Jarden

    MATH  Google Scholar 

  18. Friedlander, E., Suslin, A., Voevodsky, V.: Cohomological Theory of Presheaves with Transfers. Ann. of Math. Studies, vol. 143. Princeton Univ. Press, Princeton (2000)

    Google Scholar 

  19. Frossard, E.: Fibres dégénérées des schémas de Severi-Brauer d’ordres (degenerate fibers of Brauer-Severi schemes of orders). J. Algebra 198(2), 362–387 (1997) (French)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fulton, W.: Rational equivalence on singular varieties. Publ. Math. IHÉS 45, 147–167 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Fulton, W.: Intersection Theory. Springer, Berlin (1984). Second Edition 1998

    MATH  Google Scholar 

  22. Gabber, O., Liu, Q., Lorenzini, D.: Hypersurfaces of projective schemes and a moving lemma. Preprint (2011)

  23. Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique, Publ. Math. IHÉS 8 (II, 1–8), 20 (Chapter 0, 14–23, and IV, 1), 24 (IV, 2–7), 28 (IV, 8–15), and 32 (IV, 16–21) (1961–1967)

  24. Harase, T.: On the index-period problem for algebraic curves and Abelian varieties. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 20, 13–20 (1973)

    MathSciNet  MATH  Google Scholar 

  25. Hashimoto, M., Shida, A.: Some remarks on index and generalized Loewy length of a Gorenstein local ring. J. Algebra 187(1), 150–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heinzer, W., Levy, L.: Domains of dimension 1 with infinitely many singular maximal ideals. Rocky Mt. J. Math. 37, 203–214 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. An Algebraic Study. With an Appendix by B. Moonen. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  28. Jouanolou, J.-P.: Théorèmes de Bertini et Applications (Bertini Theorems and Applications). Progress in Mathematics, vol. 42. Birkhäuser, Boston (1983). (French)

    Google Scholar 

  29. Kaplansky, I.: Commutative Rings. Allyn and Bacon, Boston (1970)

    MATH  Google Scholar 

  30. Klassen, M., Tzermias, P.: Algebraic points of low degree on the Fermat quintic. Acta Arith. 82, 393–401 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Kleiman, S.: Toward a numerical theory of ampleness. Ann. Math. 84, 293–344 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kleiman, S.: Misconceptions about K X . Enseign. Math. 25, 203–206 (1979)

    MathSciNet  MATH  Google Scholar 

  33. Kleiman, S.: Intersection theory and enumerative geometry: a decade in review. In: With the Collaboration of Anders Thorup on 3rd Proc. Sympos. Pure Math. Part 2, Algebraic Geometry, Bowdoin, 1985, vol. 46, pp. 321–370. Am. Math. Soc., Providence (1987)

    Google Scholar 

  34. Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78, 555–563 (1956)

    Article  MATH  Google Scholar 

  35. Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983)

    MATH  Google Scholar 

  36. Lang, S., Tate, J.: Principal homogeneous spaces over Abelian varieties. Am. J. Math. 80, 659–684 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lang, S., Weil, A.: Number of points of varieties in finite fields. Am. J. Math. 76, 819–827 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lech, C.: On the associativity formula for multiplicities. Ark. Mat. 3, 301–314 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, London (2006). Paperback new edition

    MATH  Google Scholar 

  40. Liu, Q., Lorenzini, D., Raynaud, M.: Néron models, Lie algebras, and reduction of curves of genus one. Invent. Math. 157, 455–518 (2005)

    Article  MathSciNet  Google Scholar 

  41. Matsumura, H.: Commutative Algebra, 2nd edn. Benjamin/Cummings, Redwood City (1980)

    MATH  Google Scholar 

  42. Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid. First paperback edition with corrections

    MATH  Google Scholar 

  43. Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem II. Ann. Sci. Éc. Norm. Super. 22, 181–194 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Northcott, D.: Lessons on Rings, Modules and Multiplicities. Cambridge University Press, London (1968)

    Book  MATH  Google Scholar 

  45. Pedrini, C.: Incollamenti di ideali primi e gruppi di Picard. Rend. Semin. Mat. Univ. Padova 48, 39–66 (1972)

    MathSciNet  Google Scholar 

  46. Poonen, B.: Undecidability in number theory. Not. Am. Math. Soc. 55(3), 344–350 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Ratliff, L. Jr.: On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals II. Am. J. Math. 92, 99–144 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  48. Raynaud, M.: Faisceaux Amples sur les Schémas en Groupes et les Espaces Homogènes. Lecture Notes in Math., vol. 119. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  49. Roberts, J.: Chow’s moving lemma. In: Kleiman, S. (ed.) Appendix 2 to: “Motives” Algebraic Geometry, Oslo, 1970, Proc. Fifth Nordic Summer School in Math., pp. 53–82. Wolters-Noordhoff, Groningen (1972)

    Google Scholar 

  50. Saito, S., Sato, K.: A finiteness theorem for zero-cycles over p-adic fields. Ann. Math. 172, 593–639 (2010)

    Article  MathSciNet  Google Scholar 

  51. Schwede, K.: Gluing schemes and a scheme without closed points. In: Recent Progress Arithmetic and Algebraic Geometry. Contemp. Math., vol. 386, pp. 157–172. Am. Math. Soc., Providence (2005)

    Chapter  Google Scholar 

  52. Serre, J.-P., Tate, J.: Good reduction of Abelian varieties. Ann. Math. 88, 492–516 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  53. Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  54. Thorup, A.: Rational equivalence theory on arbitrary Noetherian schemes. In: Enumerative Geometry, Sitges, 1987. Lecture Notes in Math., vol. 1436, pp. 256–297. Springer, Berlin (1990)

    Chapter  Google Scholar 

  55. Tzermias, P.: On Cauchy-Liouville-Mirimanoff polynomials. Can. Math. Bull. 50, 313–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zariski, O., Samuel, P.: Commutative Algebra, vol. II. van Nostrand, Princeton (1958)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Lorenzini.

Additional information

D.L. was supported by NSF Grant 0902161.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabber, O., Liu, Q. & Lorenzini, D. The index of an algebraic variety. Invent. math. 192, 567–626 (2013). https://doi.org/10.1007/s00222-012-0418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0418-z

Mathematics Subject Classification

Navigation