Inventiones mathematicae

, Volume 186, Issue 2, pp 435–479

Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds

  • D. Maulik
  • A. Oblomkov
  • A. Okounkov
  • R. Pandharipande
Article

DOI: 10.1007/s00222-011-0322-y

Cite this article as:
Maulik, D., Oblomkov, A., Okounkov, A. et al. Invent. math. (2011) 186: 435. doi:10.1007/s00222-011-0322-y
  • 280 Downloads

Abstract

We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Mariño, and Vafa of the Gromov-Witten theory of local Calabi-Yau toric 3-folds are proven to be correct in the full 3-leg setting.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Maulik
    • 1
  • A. Oblomkov
    • 2
  • A. Okounkov
    • 2
  • R. Pandharipande
    • 2
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations