Inventiones mathematicae

, Volume 181, Issue 3, pp 577–603

Exotic smooth structures on small 4-manifolds with odd signatures


DOI: 10.1007/s00222-010-0254-y

Cite this article as:
Akhmedov, A. & Park, B.D. Invent. math. (2010) 181: 577. doi:10.1007/s00222-010-0254-y


Let M be \((2n-1)\mathbb{CP}^{2}\#2n\overline{\mathbb{CP}}{}^{2}\) for any integer n≥1. We construct an irreducible symplectic 4-manifold homeomorphic to M and also an infinite family of pairwise non-diffeomorphic irreducible non-symplectic 4-manifolds homeomorphic to M. We also construct such exotic smooth structures when M is \(\mathbb{CP}{}^{2}\#4\overline {\mathbb{CP}}{}^{2}\) or \(3\mathbb{CP}{}^{2}\#k\overline{\mathbb{CP}}{}^{2}\) for k=6,8,10.

Mathematics Subject Classification (2000)


Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada