, Volume 175, Issue 1, pp 35-102

On the uniqueness of smooth, stationary black holes in vacuum

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

A fundamental conjecture in general relativity asserts that the domain of outer communication of a regular, stationary, four dimensional, vacuum black hole solution is isometrically diffeomorphic to the domain of outer communication of a Kerr black hole. So far the conjecture has been resolved, by combining results of Hawking [17], Carter [4] and Robinson [28], under the additional hypothesis of non-degenerate horizons and real analyticity of the space-time. We develop a new strategy to bypass analyticity based on a tensorial characterization of the Kerr solutions, due to Mars [24], and new geometric Carleman estimates. We prove, under a technical assumption (an identity relating the Ernst potential and the Killing scalar) on the bifurcate sphere of the event horizon, that the domain of outer communication of a smooth, regular, stationary Einstein vacuum spacetime of dimension 4 is locally isometric to the domain of outer communication of a Kerr spacetime.