Inventiones mathematicae

, 172:383

Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations


DOI: 10.1007/s00222-007-0104-8

Cite this article as:
Badulescu, A. Invent. math. (2008) 172: 383. doi:10.1007/s00222-007-0104-8


In this paper we generalize the local Jacquet-Langlands correspondence to all unitary irreducible representations. We prove the global Jacquet-Langlands correspondence in characteristic zero. As consequences we obtain the multiplicity one and strong multiplicity one Theorems for inner forms of GL(n) as well as a classification of the residual spectrum and automorphic representations in analogy with results proved by Mœglin–Waldspurger and Jacquet–Shalika for GL(n).

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.UFR Sciences SP2MI, Département de MathématiquesUniversité de PoitiersFuturoscope Chasseneuil CedexFrance

Personalised recommendations