Inventiones mathematicae

, Volume 171, Issue 2, pp 463–483

Intersections of polynomial orbits, and a dynamical Mordell–Lang conjecture

Authors

    • Department of Mathematics & Computer ScienceUniversity of Lethbridge
  • Thomas J. Tucker
    • Department of MathematicsUniversity of Rochester
  • Michael E. Zieve
    • Center for Communications Research
Article

DOI: 10.1007/s00222-007-0087-5

Cite this article as:
Ghioca, D., Tucker, T. & Zieve, M. Invent. math. (2008) 171: 463. doi:10.1007/s00222-007-0087-5

Abstract

We prove that if nonlinear complex polynomials of the same degree have orbits with infinite intersection, then the polynomials have a common iterate. We also prove a special case of a conjectured dynamical analogue of the Mordell–Lang conjecture.

Copyright information

© Springer-Verlag 2007