Inventiones mathematicae

, Volume 154, Issue 3, pp 617–651

On the category 𝒪 for rational Cherednik algebras

Authors

    • Department of MathematicsUniversity of Chicago
    • Department of MathematicsUniversity of Chicago
    • Korteweg de Vries Institute for MathematicsUniversity of Amsterdam
    • UFR de Mathématiques et Institut de Mathématiques de Jussieu (CNRS UMR 7586)Université Paris VII
Article

DOI: 10.1007/s00222-003-0313-8

Cite this article as:
Ginzburg, V., Guay, N., Opdam, E. et al. Invent. math. (2003) 154: 617. doi:10.1007/s00222-003-0313-8

Abstract

We study the category 𝒪 of representations of the rational Cherednik algebra AW attached to a complex reflection group W. We construct an exact functor, called Knizhnik-Zamolodchikov functor: 𝒪→ℋW-mod, where ℋW is the (finite) Iwahori-Hecke algebra associated to W. We prove that the Knizhnik-Zamolodchikov functor induces an equivalence between 𝒪/𝒪tor, the quotient of 𝒪 by the subcategory of AW-modules supported on the discriminant, and the category of finite-dimensional ℋW-modules. The standard AW-modules go, under this equivalence, to certain modules arising in Kazhdan-Lusztig theory of “cells”, provided W is a Weyl group and the Hecke algebra ℋW has equal parameters. We prove that the category 𝒪 is equivalent to the module category over a finite dimensional algebra, a generalized “q-Schur algebra” associated to W.

Copyright information

© Springer-Verlag 2003