Skip to main content
Log in

Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We consider the system of N (≥2) hard disks of masses m 1,...,m N and radius r in the flat unit torus 𝕋2. We prove the ergodicity (actually, the B-mixing property) of such systems for almost every selection (m 1,...,m N ;r) of the outer geometric parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bálint, P., Chernov, N., Szász, D., Tóth, I.P.: Multidimensional semidispersing billiards: singularities and the fundamental theorem. Ann. Inst. Henri Poincaré 3, 451–482 (2002)

    Google Scholar 

  2. Bunimovich, L., Liverani, C., Pellegrinotti, A., Sukhov, Yu.: Special Systems of Hard Balls that Are Ergodic. Commun. Math. Phys. 146, 357–396 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Bunimovich, L.A., Sinai, Ya. G.: The fundamental theorem of the theory of scattering billiards. Math. USSR-Sb. 19, 407–423 (1973)

    Google Scholar 

  4. Burago, D., Ferleger, S., Kononenko, A.: A geometric approach to semidispersing billiards. Ergodic Theory Dyn. Syst. 18, 303–319 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chernov, N.I.: Statistical Properties of the Periodic Lorentz Gas. Multidimensional Case. J. Stat. Phys. 74, 11–54 (1994)

    MATH  Google Scholar 

  6. Chernov, N.I., Haskell, C.: Non-uniformly hyperbolic K-systems are Bernoulli. Ergodic Theory Dyn. Syst. 16, 19–44 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Engelking, R.: General Topology. Warsaw: PWN Polish Scientific Publishers 1978

  8. Engelking, R.: Dimension Theory. North-Holland (1978)

  9. Galperin, G.: On systems of locally interacting and repelling particles moving in space. Tr. Mosk. Mat. O.-va. 43, 142–196 (1981)

    MATH  Google Scholar 

  10. Katok, A., Burns, K.: Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergodic Theory Dyn. Syst. 14, 757–785 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Katok, A., Strelcyn, J.-M.: Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lect. Notes Math. 1222. Springer 1986

  12. Kornfeld, I.P., Sinai, Ya.G., Fomin, S.V.: Ergodic Theory. Moscow: Nauka 1980

  13. Krámli, A., Simányi, N., Szász, D.: Ergodic Properties of Semi–Dispersing Billiards I. Two Cylindric Scatterers in the 3–D Torus. Nonlinearity. 2, 311–326 (1989)

    Google Scholar 

  14. Krámli, A., Simányi, N., Szász, D.: A “Transversal” Fundamental Theorem for Semi-Dispersing Billiards. Commun. Math. Phys. 129, 535–560 (1990)

    Google Scholar 

  15. Krámli, A., Simányi, N., Szász, D.: The K–Property of Three Billiard Balls. Ann. Math. 133, 37–72 (1991)

    Google Scholar 

  16. Krámli, A., Simányi, N., Szász, D.: The K–Property of Four Billiard Balls. Commun. Math. Phys. 144, 107–148 (1992)

    Google Scholar 

  17. Krylov, N.S.: The Processes of Relaxation of Statistical Systems and the Criterion of Mechanical Instability. Thesis, Moscow; Republished in English by Princeton University Press, Princeton N.J. 1979

  18. Liverani, C., Wojtkowski, M.: Ergodicity in Hamiltonian systems. Dyn. Rep. 4, 130–202 (1995)

    MATH  Google Scholar 

  19. Ornstein, D., Weiss, B.: On the Bernoulli Nature of Systems with Some Hyperbolic Structure. Ergodic Theory Dyn. Syst. 18, 441–456 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pesin, Ya.: Characteristic Exponents and Smooth Ergodic Theory. Russ. Math. Surv. 32, 55–114 (1977)

    MATH  Google Scholar 

  21. Rudolph, D.J.: Classifying the isometric extensions of a Bernoulli shift. J. Anal. Math. 34, 36–50 (1978)

    MathSciNet  MATH  Google Scholar 

  22. Simányi, N.: The K-property of N billiard balls I. Invent. Math. 108, 521–548 (1992)

    Google Scholar 

  23. Simányi, N.: The K-property of N billiard balls II. Computation of neutral linear spaces. Invent. Math. 110, 151–172 (1992)

    Google Scholar 

  24. Simányi, N.: The Complete Hyperbolicity of Cylindric Billiards. Ergodic Theory Dyn. Syst. 22, 281–302 (2002)

    Google Scholar 

  25. Simányi, N., Szász, D.: The K-property of 4-D Billiards with Non-Orthogonal Cylindric Scatterers. J. Stat. Phys. 76, 587–604 (1994)

    Google Scholar 

  26. Simányi, N., Szász, D.: The K-property of Hamiltonian systems with restricted hard ball interactions. Math. Res. Lett. 2, 751–770 (1995)

    Google Scholar 

  27. Simányi, N., Szász, D.: Hard Ball Systems Are Completely Hyperbolic. Ann. Math. 149, 35–96 (1999)

    Google Scholar 

  28. Simányi, N., Szász, D.: Non-integrability of Cylindric Billiards and Transitive Lie Group Actions. Ergodic Theory Dyn. Syst. 20, 593–610 (2000)

    Article  Google Scholar 

  29. Simányi, N., Wojtkowski, M.P.: Two-particle billiard system with arbitrary mass ratio. Ergodic Theory Dyn. Syst. 9, 165–171 (1989)

    Google Scholar 

  30. Sinai, Ya.G.: On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics. Soviet Math. Dokl. 4, 1818–1822 (1963)

    Google Scholar 

  31. Sinai, Ya.G.: Dynamical systems with countably multiple Lebesgue spectrum II. Am. Math. Soc. Transl. 68, 34–38 (1968)

    Google Scholar 

  32. Sinai, Ya.G.: Dynamical Systems with Elastic Reflections. Russ. Math. Surv. 25, 137–189 (1970)

    MATH  Google Scholar 

  33. Sinai, Ya.G.: Development of Krylov’s ideas. Afterword to N.S. Krylov’s “Works on the foundations of statistical physics”, see reference [K1979]. Princeton, N.J.: Princeton University Press 1979

  34. Sinai,Ya.G., Chernov, N.I.: Entropy of a gas of hard spheres with respect to the group of space-time shifts. Tr. Semin. Im. I. G. Petrovskogo 8, 218–238 (1982)

    Google Scholar 

  35. Sinai, Ya.G., Chernov, N.I.: Ergodic properties of certain systems of 2–D discs and 3–D balls. Russ. Math. Surv. 42, 181–207 (1987)

    Google Scholar 

  36. Szász, D.: Ergodicity of classical billiard balls, Physica A 194, 86–92 (1993)

    Google Scholar 

  37. Szász, D.: The K-property of ‘Orthogonal’ Cylindric Billiards. Commun. Math. Phys. 160, 581–597 (1994)

    Google Scholar 

  38. Szász, D.: Boltzmann’s Ergodic Hypothesis, a Conjecture for Centuries? Stud. Sci. Math. Hung. 31, 299–322 (1996)

    Google Scholar 

  39. Vaserstein, L.N.: On Systems of Particles with Finite Range and/or Repulsive Interactions. Commun. Math. Phys. 69, 31–56 (1979)

    Google Scholar 

  40. Wojtkowski, M.: Measure theoretic entropy of the system of hard spheres. Ergodic Theory Dyn. Syst. 8, 133–153 (1988)

    MathSciNet  MATH  Google Scholar 

  41. Wojtkowski, M.: Linearly stable orbits in 3-dimensional billiards. Commun. Math. Phys. 129, 319–327 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nándor Simányi.

Additional information

Dedicated to Ya. G. Sinai honoring his 65th birthday

Mathematics Subject Classification (2000)

37D50, 34D05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simányi, N. Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems. Invent. math. 154, 123–178 (2003). https://doi.org/10.1007/s00222-003-0304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0304-9

Keywords

Navigation