Skip to main content
Log in

Testing the concurrent validity of a naturalistic upper extremity reaching task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Point-to-point reaching has been widely used to study upper extremity motor control. We have been developing a naturalistic reaching task that adds tool manipulation and object transport to this established paradigm. The purpose of this study was to determine the concurrent validity of a naturalistic reaching task in a sample of healthy adults. This task was compared to the criterion measure of standard point-to-point reaching. Twenty-eight adults performed unconstrained out-and-back movements in three different directions relative to constant start location along midline using their nondominant arm. In the naturalistic task, participants manipulated a tool to transport objects sequentially between physical targets anchored to the planar workspace. In the standard task, participants moved a digital cursor sequentially between virtual targets, veridical to the planar workspace. In both tasks, the primary measure of performance was trial time, which indicated the time to complete 15 reaches (five cycles of three reaches/target). Two other comparator tasks were also designed to test concurrent validity when components of the naturalistic task were added to the standard task. Spearman’s rank correlation coefficients indicated minimal relationship between the naturalistic and standard tasks due to differences in progressive task difficulty. Accounting for this yielded a moderate linear relationship, indicating concurrent validity. The comparator tasks were also related to both the standard and naturalistic task. Thus, the principles of motor control and learning that have been established by the wealth of point-to-point reaching studies can still be applied to the naturalistic task to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams RJ, Lichter MD, Krepkovich ET, Ellington A, White M, Diamond PT (2015) Assessing upper extremity motor function in practice of virtual activities of daily living. IEEE Trans Neural Syst Rehabil Eng 23:287–296

    Article  PubMed  Google Scholar 

  • Bailey RR, Klaesner JW, Lang CE (2014) An accelerometry-based methodology for assessment of real-world bilateral upper extremity activity. PLoS One 9:e103135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beer RF, Dewald JP, Dawson ML, Rymer WZ (2004) Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp Brain Res 156:458–470

    Article  PubMed  Google Scholar 

  • Bramell-Risberg E, Jarnlo GB, Elmstahl S (2010) Slowing of alternating forearm movements is associated with cognitive impairment in community-dwelling older people. Dement Geriatr Cogn Disord 29:457–466

    Article  PubMed  CAS  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  PubMed  CAS  Google Scholar 

  • Brodie SM, Meehan S, Borich MR, Boyd LA (2014) 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke. Front Hum Neurosci 8:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown SH, Cooke JD (1981) Amplitude- and instruction-dependent modulation of movement-related electromyogram activity in humans. J Physiol 316:97–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brown SH, Cooke JD (1984) Initial agonist burst duration depends on movement amplitude. Exp Brain Res 55:523–527

    Article  PubMed  CAS  Google Scholar 

  • Bufton A, Campbell A, Howie E, Straker L (2014) A comparison of the upper limb movement kinematics utilized by children playing virtual and real table tennis. Hum Mov Sci 38:84–93

    Article  PubMed  Google Scholar 

  • Cantin N, Ryan J, Polatajko HJ (2014) Impact of task difficulty and motor ability on visual-motor task performance of children with and without developmental coordination disorder. Hum Mov Sci 34:217–232

    Article  PubMed  Google Scholar 

  • Casadio M, Sanguineti V, Morasso P, Solaro C (2008) Abnormal sensorimotor control, but intact force field adaptation, in multiple sclerosis subjects with no clinical disability. Mult Scler 14:330–342

    Article  PubMed  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6:726–736

    Article  PubMed  CAS  Google Scholar 

  • Cherry KM, Lenze EJ, Lang CE (2014) Combining d-cycloserine with motor training does not result in improved general motor learning in neurologically intact people or in people with stroke. J Neurophysiol 111:2516–2524

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Cook TD, Campell DT (1979) Quasi-experimentation: design & analysis issues for field settings. Houghton Mifflin, Boston

    Google Scholar 

  • Cozens JA, Bhakta BB (2003) Measuring movement irregularity in the upper motor neurone syndrome using normalised average rectified jerk. J Electromyogr Kinesiol 13:73–81

    Article  PubMed  Google Scholar 

  • Danion F, Sarlegna FR (2007) Can the human brain predict the consequences of arm movement corrections when transporting an object? Hints from grip force adjustments. J Neurosci 27:12839–12843

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997) Constrained and unconstrained movements involve different control strategies. J Neurophysiol 77:1644–1650

    PubMed  CAS  Google Scholar 

  • Dukelow SP, Herter TM, Bagg SD, Scott SH (2012) The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil 9:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Fattori P, Raos V, Breveglieri R, Bosco A, Marzocchi N, Galletti C (2010) The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey. J Neurosci 30:342–349

    Article  PubMed  CAS  Google Scholar 

  • Felix K, Gain K, Paiva E, Whitney K, Jenkins ME, Spaulding SJ (2012) Upper extremity motor learning among individuals with parkinson’s disease: a meta-analysis evaluating movement time in simple tasks. Parkinsons Dis 2012:589152

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fetz EE, Cheney PD, Mewes K, Palmer S (1989) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Prog Brain Res 80:437–449 (discussion 427–430)

    Article  PubMed  CAS  Google Scholar 

  • Fisk JD, Goodale MA (1988) The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit. Exp Brain Res 72:425–435

    Article  PubMed  CAS  Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Article  PubMed  CAS  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    PubMed  CAS  Google Scholar 

  • Gates DH, Wilken JM, Scott SJ, Sinitski EH, Dingwell JB (2012) Kinematic strategies for walking across a destabilizing rock surface. Gait Posture 35:36–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentilucci M, Castiello U, Corradini ML, Scarpa M, Umilta C, Rizzolatti G (1991) Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 29:361–378

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    PubMed  CAS  Google Scholar 

  • Ghilardi MF, Alberoni M, Marelli S, Rossi M, Franceschi M, Ghez C, Fazio F (1999) Impaired movement control in Alzheimer’s disease. Neurosci Lett 260:45–48

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti T, Libon DJ, Buxbaum LJ, Schwartz MF (2002) Naturalistic action impairments in dementia. Neuropsychologia 40:1220–1232

    Article  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Goodman SR, Gottlieb GL (1995) Analysis of kinematic invariances of multijoint reaching movement. Biol Cybern 73:311–322

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994) Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cereb Cortex 6:226–237

    Article  PubMed  CAS  Google Scholar 

  • Gribble PL, Ostry DJ (1999) Compensation for interaction torques during single- and multijoint limb movement. J Neurophysiol 82:2310–2326

    PubMed  CAS  Google Scholar 

  • Hartman E, Houwen S, Scherder E, Visscher C (2010) On the relationship between motor performance and executive functioning in children with intellectual disabilities. J Intellect Disabil Res 54:468–477

    Article  PubMed  CAS  Google Scholar 

  • Hartmann K, Goldenberg G, Daumuller M, Hermsdorfer J (2005) It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia 43:625–637

    Article  PubMed  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331

    Article  PubMed  CAS  Google Scholar 

  • Ingram JN, Wolpert DM (2011) Naturalistic approaches to sensorimotor control. Prog Brain Res 191:3–29

    Article  PubMed  Google Scholar 

  • Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA (1969) An objective and standardized test of hand function. Arch Phys Med Rehabil 50:311–319

    PubMed  CAS  Google Scholar 

  • Johnson MJ (2006) Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. J Neuroeng Rehabil 3:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly VE, Bastian AJ (2005) Antiparkinson medications improve agonist activation but not antagonist inhibition during sequential reaching movements. Mov Disord 20:694–704

    Article  PubMed  Google Scholar 

  • Klein A, Sacrey LA, Whishaw IQ, Dunnett SB (2012) The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 36:1030–1042

    Article  PubMed  Google Scholar 

  • Konczak J, Dichgans J (1997) The development toward stereotypic arm kinematics during reaching in the first 3 years of life. Exp Brain Res 117:346–354

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20:8916–8924

    PubMed  CAS  Google Scholar 

  • Lang CE, Wagner JM, Bastian AJ, Hu Q, Edwards DF, Sahrmann SA, Dromerick AW (2005) Deficits in grasp versus reach during acute hemiparesis. Exp Brain Res 166:126–136

    Article  PubMed  Google Scholar 

  • Lee MH, Newell KM (2013) Contingent auditory feedback of arm movement facilitates reaching behavior in infancy. Infant Behav Dev 36:817–824

    Article  PubMed  Google Scholar 

  • Leuthold H, Schroter H (2011) Motor programming of finger sequences of different complexity. Biol Psychol 86:57–64

    Article  PubMed  Google Scholar 

  • Levin MF (1996) Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119:281–293

    Article  PubMed  Google Scholar 

  • Marteniuk RG, MacKenzie CL, Jeannerod M, Athenes S, Dugas C (1987) Constraints on human arm movement trajectories. Can J Psychol 41:365–378

    Article  PubMed  CAS  Google Scholar 

  • Martin JH, Ghez C (1988) Red nucleus and motor cortex: parallel motor systems for the initiation and control of skilled movement. Behav Brain Res 28:217–223

    Article  PubMed  CAS  Google Scholar 

  • McManus IC, Kemp RI, Grant J (1986) Differences between fingers and hands in tapping ability: dissociation between speed and regularity. Cortex 22:461–473

    Article  PubMed  CAS  Google Scholar 

  • Messick S (1995) Validity of psychological assessment: validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. Am Psychol 50:741–749

    Article  Google Scholar 

  • Michmizos KP, Vaisman L, Krebs HI (2014) A comparative analysis of speed profile models for ankle pointing movements: evidence that lower and upper extremity discrete movements are controlled by a single invariant strategy. Front Hum Neurosci 8:962

    Article  PubMed  PubMed Central  Google Scholar 

  • Mickevičienė D, Skurvydas A, Karanauskienė D (2015) Is intraindividual variability different between unimanual and bimanual speed-accuracy movements? Percept Mot Skills 120:125–138

    Article  PubMed  Google Scholar 

  • Mislevy JL, Rupp AA (2010) Concurrent validity. In: Salkind NJ (ed) Encyclopedia of research design. SAGE Publications Inc, Thousand Oaks, pp 210–212

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Petuskey K, Bagley A, Abdala E, James MA, Rab G (2007) Upper extremity kinematics during functional activities: three-dimensional studies in a normal pediatric population. Gait Posture 25:573–579

    Article  PubMed  Google Scholar 

  • Polit A, Bizzi E (1979) Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol 42:183–194

    PubMed  CAS  Google Scholar 

  • Pratt ML, Leonard HC, Adeyinka H, Hill EL (2014) The effect of motor load on planning and inhibition in developmental coordination disorder. Res Dev Disabil 35:1579–1587

    Article  PubMed  Google Scholar 

  • Raw RK, Kountouriotis GK, Mon-Williams M, Wilkie RM (2012) Movement control in older adults: does old age mean middle of the road? J Exp Psychol Hum Percept Perform 38:735–745

    Article  PubMed  Google Scholar 

  • Reinkensmeyer DJ (2010) Robotic approaches to stroke recovery. In: Cramer SC, Nudo RJ (eds) Brain repair after stroke. Cambridge University Press, New York, pp 195–205

    Chapter  Google Scholar 

  • Rosenbaum DA, Brach M, Semenov A (2011) Behavioral ecology meets motor behavior: choosing between walking and reaching paths. J Motor Behav 43:131–136

    Article  Google Scholar 

  • Roy AC, Paulignan Y, Farne A, Jouffrais C, Boussaoud D (2000) Hand kinematics during reaching and grasping in the macaque monkey. Behav Brain Res 117:75–82

    Article  PubMed  CAS  Google Scholar 

  • Roy-Byrne PP, Sherbourne CD, Craske MG, Stein MB, Katon W, Sullivan G, Means-Christensen A, Bystritsky A (2003) Moving treatment research from clinical trials to the real world. Psychiatr Serv 54:327–332

    Article  PubMed  Google Scholar 

  • Sainburg RL (2014) Convergent models of handedness and brain lateralization. Front Psychol 5:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675

    PubMed  CAS  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    PubMed  CAS  Google Scholar 

  • Saturni S, Bellini F, Braido F, Paggiaro P, Sanduzzi A, Scichilone N, Santus PA, Morandi L, Papi A (2014) Randomized Controlled Trials and real life studies. Approaches and methodologies: a clinical point of view. Pulm Pharmacol Ther 27:129–138

    Article  PubMed  CAS  Google Scholar 

  • Sbordone RJ (1996) Ecological validity: some critical issues for the neuropsychologist. In: Sbordone RJ, Long CJ (eds) Ecological validity of neuropsychological testing. GR Press/St. Lucie Press, Delray Beach, pp 15–41

    Google Scholar 

  • Schaefer SY (2015) Preserved motor asymmetry in late adulthood: is measuring chronological age enough? Neuroscience 294:51–59

    Article  PubMed  CAS  Google Scholar 

  • Schaefer SY, Lang CE (2012) Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study. J Mot Behav 44:313–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2009) Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia 47:2953–2966

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, DeJong SL, Cherry KM, Lang CE (2012) Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis. Mot Control 16:245–264

    Google Scholar 

  • Schaefer SY, Patterson CB, Lang CE (2013) Transfer of training between distinct motor tasks after stroke: implications for task-specific approaches to upper-extremity neurorehabilitation. Neurorehabil Neural Repair 27:602–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaefer SY, Dibble LE, Duff K (2015) Efficacy and feasibility of functional upper extremity task-specific training for older adults with and without cognitive impairment. Neurorehabil Neural Repair 29:636–644

    Article  PubMed  Google Scholar 

  • Scheidt RA, Rymer WZ (2000) Control strategies for the transition from multijoint to single-joint arm movements studied using a simple mechanical constraint. J Neurophysiol 83:1–12

    PubMed  CAS  Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927

    PubMed  CAS  Google Scholar 

  • Schwartz MF, Montgomery MW, Buxbaum LJ, Lee SS, Carew TG, Coslett HB, Ferraro M, Fitzpatrick-DeSalme E, Hart T, Mayer N (1998) Naturalistic action impairment in closed head injury. Neuropsychology 12:13–28

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (1999) Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods 89:119–127

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (2000) Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm? Can J Physiol Pharmacol 78:923–933

    Article  PubMed  CAS  Google Scholar 

  • Semrau JA, Perlmutter JS, Thoroughman KA (2014) Visuomotor adaptation in Parkinson’s disease: effects of perturbation type and medication state. J Neurophysiol 111:2675–2687

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheridan MR (1973) Effects of s-R compatibility and task difficulty on unimaimual movement time. J Mot Behav 5:199–205

    Article  PubMed  CAS  Google Scholar 

  • Slepian ML, Young SG, Rutchick AM, Ambady N (2013) Quality of professional players’ poker hands is perceived accurately from arm motions. Psychol Sci 24:2335–2338

    Article  PubMed  Google Scholar 

  • Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solaro C, Brichetto G, Casadio M, Roccatagliata L, Ruggiu P, Mancardi GL, Morasso PG, Tanganelli P, Sanguineti V (2007) Subtle upper limb impairment in asymptomatic multiple sclerosis subjects. Mult Scler 13:428–432

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Pachana NA (2006) Ecological validity in neuropsychological assessment: a case for greater consideration in research with neurologically intact populations. Arch Clin Neuropsychol 21:327–337

    Article  PubMed  Google Scholar 

  • Srinivasan L, da Silva M (2011) Breaking the fixed-arrival-time restriction in reaching movements of neural prosthetic devices. IEEE Trans Biomed Eng 58:1555–1564

    Article  PubMed  Google Scholar 

  • Stewart JC, Yeh SC, Jung Y, Yoon H, Whitford M, Chen SY, Li L, McLaughlin M, Rizzo A, Winstein CJ (2007) Intervention to enhance skilled arm and hand movements after stroke: a feasibility study using a new virtual reality system. J Neuroeng Rehabil 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart JC, Tran X, Cramer SC (2014) Age-related variability in performance of a motor action selection task is related to differences in brain function and structure among older adults. Neuroimage 86:326–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Suchy Y, Kraybill M (2007) The relationship between motor programming and executive abilities: constructs measured by the push-turn-taptap task from the behavioral dyscontrol scale-electronic version. J Clin Exp Neuropsychol 29:648–659

    Article  PubMed  Google Scholar 

  • Tippett WJ, Sergio LE (2006) Visuomotor integration is impaired in early stage Alzheimer’s disease. Brain Res 1102:92–102

    Article  PubMed  CAS  Google Scholar 

  • Velicki MR, Winstein CJ, Pohl PS (2000) Impaired direction and extent specification of aimed arm movements in humans with stroke-related brain damage. Exp Brain Res 130:362–374

    Article  PubMed  CAS  Google Scholar 

  • Verheij S, Muilwijk D, Pel JJ, van der Cammen TJ, Mattace-Raso FU, van der Steen J (2012) Visuomotor impairment in early-stage Alzheimer’s disease: changes in relative timing of eye and hand movements. J Alzheimers Dis 30:131–143

    PubMed  Google Scholar 

  • Winstein CJ, Grafton ST, Pohl PS (1997) Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J Neurophysiol 77:1581–1594

    PubMed  CAS  Google Scholar 

  • Wisneski KJ, Johnson MJ (2007) Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks. J Neuroeng Rehabil 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev 3:1–119

    Google Scholar 

  • Wright CB, Festa JR, Paik MC, Schmiedigen A, Brown TR, Yoshita M, DeCarli C, Sacco R, Stern Y (2008) White matter hyperintensities and subclinical infarction: associations with psychomotor speed and cognitive flexibility. Stroke 39:800–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992

    Article  PubMed  CAS  Google Scholar 

  • Yan JH, Dick MB (2006) Practice effects on motor control in healthy seniors and patients with mild cognitive impairment and Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 13:385–410

    Article  PubMed  Google Scholar 

  • Zackowski KM, Dromerick AW, Sahrmann SA, Thach WT, Bastian AJ (2004) How do strength, sensation, spasticity and joint individuation relate to the reaching deficits of people with chronic hemiparesis? Brain 127:1035–1046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge those who helped with data collection (JR Pierce and KE Tew). Research reported in this study was supported by the National Institute on Aging of the National Institutes of Health under award number K01AG047926. This work was also supported in part by the Utah State University Office of Research and Graduate Studies (RC #28037) and the Marriner S. Eccles Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Schaefer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or National Research Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer, S.Y., Hengge, C.R. Testing the concurrent validity of a naturalistic upper extremity reaching task. Exp Brain Res 234, 229–240 (2016). https://doi.org/10.1007/s00221-015-4454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4454-y

Keywords

Navigation