, Volume 232, Issue 3, pp 1047-1056
Date: 16 Jan 2014

The influence of body posture on the kinematics of prehension in humans and gorillas (Gorilla gorilla)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Much of our current understanding of human prehension in a comparative context is based on macaque models in a sitting, constrained body posture. In a previous study, we clearly showed differences in the amplitude of the forelimb joints between five primate species (lemur, capuchin, chimpanzee, gorilla and human) during unconstrained grasping where the animals were free to choose their body posture. One of our interrogations was to know if these differences could be due to the body posture. To address this question, this study compares humans with new data for gorillas during an unconstrained food prehension task in two body postures, a sitting and a quadrupedal one. The objective is to determine the behavioral and kinematic strategies (amplitudes and patterns of evolution of the articular angles) as well as differences and invariants of trunk and forelimb motions between species. The subjects were recorded by five cameras, and landmarks were digitized frame by frame to reconstruct 3D movement. Our results show that (1) despite significant influences of body postures on ranges of motion in gorillas and humans, species preserve their specific forelimb joint and trunk contribution; (2) body posture has a limited effect on the basic pattern of wrist velocity. Our study indicates that different primate species have specific kinematic features of limb coordination during prehension, which dose not alter with changes in posture. Therefore, across varying species, it is possible to compare limb kinematics irrespective of postural constraints and unconstrained condition need to be explored in other primates to understand the evolution of primate prehension.