Skip to main content
Log in

Temporal processing of active and passive head movement

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The brain can know about an active head movement even in advance of its execution by means of an efference copy signal. In fact, sensory correlates of active movements appear to be suppressed. Passive disturbances of the head, however, can be detected only by sensory feedback. Might the perceived timing of an active head movement be speeded relative to the perception of a passive movement due to the efferent copy (anticipation hypothesis) or delayed because of sensory suppression (suppression hypothesis)? We compared the perceived timing of active and passive head movement using other sensory events as temporal reference points. Participants made unspeeded temporal order and synchronicity judgments comparing the perceived onset of active and passive head movement with the onset of tactile, auditory and visual stimuli. The comparison stimuli had to be delayed by about 45 ms to appear coincident with passive head movement or by about 80 ms to appear aligned with an active head movement. The slow perceptual reaction to vestibular activation is compatible with our earlier study using galvanic stimulation (Barnett-Cowan and Harris 2009). The unexpected additional delay in processing the timing of an active head movement is compatible with the suppression hypothesis and is discussed in relation to suppression of vestibular signals during self-generated head movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aschersleben G, Prinz W (1995) Synchronizing actions with events: the role of sensory information. Percept Psychophys 57:305–317

    Article  PubMed  CAS  Google Scholar 

  • Aschersleben G, Gehrke J, Prinz W (2001) Tapping with peripheral nerve block. A role for tactile feedback in the timing of movements. Exp Brain Res 136:331–339

    Article  PubMed  CAS  Google Scholar 

  • Aschersleben G, Gehrke J, Prinz W (2004) A psychophysical approach to action timing. In: Kaernbach C, Schröger E, Müller H (eds) Psychophysics beyond sensation: laws and invariants of human cognition. Erlbaum, Mahwah, NJ, pp 117–136

    Google Scholar 

  • Barnett-Cowan M, Harris LR (2009) Perceived timing of vestibular stimulation relative to touch, light and sound. Exp Brain Res 198:221–231

    Article  PubMed  Google Scholar 

  • Biguer B, Donaldson IML, Hein A, Jeannerod M (1988) Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111:1405–1424

    Article  PubMed  Google Scholar 

  • Blakemore SJ, Wolpert DM, Frith CD (2002) Abnormalities in the awareness of action. Trends Cogn Sci 6:237–242

    Article  PubMed  Google Scholar 

  • Blouin J, Labrousse L, Simoneau M, Vercher JL, Gauthier GM (1998) Updating visual space during passive and voluntary head-in-space movements. Exp Brain Res 122:93–100

    Article  PubMed  CAS  Google Scholar 

  • Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey. Ann NY Acad Sci 781:244–263

    Article  PubMed  CAS  Google Scholar 

  • Burr DC, Morgan MJ, Morrone MC (1999) Saccadic suppression precedes visual motion analysis. Curr Biol 9:1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Cullen KE, Huterer M, Braidwood DA, Sylvestre PA (2004) Time course of vestibuloocular reflex suppression during gaze shifts. J Neurophysiol 92:3408–3422

    Article  PubMed  Google Scholar 

  • Cullen KE, Brooks JX, Jamali M, Carriot J, Massot C (2011) Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing. Exp Brain Res 210:377–388

    Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J App Physiol 96:2301–2316

    Article  Google Scholar 

  • Haggard P, Whitford B (2004) Supplementary motor area provides an efferent signal for sensory suppression. Cogn Brain Res 19:52–58

    Article  Google Scholar 

  • Haggard P, Newman C, Magno E (1999) On the perceived time of voluntary actions. Br J Psychol 90:291–303

    Article  PubMed  Google Scholar 

  • Heerspink HM, Berkouwer WR, Stroosma O, van Paassen MM, Mulder M, Mulder JA (2005) Evaluation of vestibular thresholds for motion detection in the Simona research simulator. In: Proceedings of the AIAA modeling and simulation technologies conference and exhibit, San Francisco (CA), AIAA-2005-6502

  • Jurgens R, Boss T, Becker W (1999) Estimation of self-turning in the dark: comparison between active and passive rotation. Exp Brain Res 128:491–504

    Article  PubMed  CAS  Google Scholar 

  • Lau HC, Rogers RD, Haggard P, Passingham RE (2004) Attention to intention. Science 303:1208–1210

    Article  PubMed  CAS  Google Scholar 

  • Libet B (1985) Participative antedating of a sensory experience and mind-brain theories: reply to Honderich (1984). J Theor Biol 114:563–570

    Article  PubMed  CAS  Google Scholar 

  • Matin E (1974) Saccadic suppression: a review and analysis. Psychol Bull 81:899–917

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. J Neurophysiol 82:416–428

    PubMed  CAS  Google Scholar 

  • Mitrani L, Shekerdjiiski S, Yakimoff N (1986) Mechanisms and asymmetries in visual perception of simultaneity and temporal order. Biol Cybern 54:159–165

    Article  PubMed  CAS  Google Scholar 

  • Morrone MC, Ross J, Burr D (2005) Saccadic eye movements cause compression of time as well as space. Nat Neurosci 8:950–954

    PubMed  CAS  Google Scholar 

  • Obhi SS (2007) Evidence for feedback dependent conscious awareness of action. Brain Res 1161:88–94

    Article  PubMed  CAS  Google Scholar 

  • Obhi SS, Planetta PJ, Scantlebury J (2009) On the signals underlying conscious awareness of action. Cognition 110:65–73

    Article  PubMed  Google Scholar 

  • Roll R, Velay JL, Roll JP (1991) Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp Brain Res 85:423–431

    Article  PubMed  CAS  Google Scholar 

  • Ross J, Morrone MC, Burr DC (1997) Compression of visual space before saccades. Nature 384:598–601

    Article  Google Scholar 

  • Ross J, Morrone MC, Goldberg ME, Burr DC (2001) Changes in visual perception at the time of saccades. Trends Neurosci 24:113–121

    Article  PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci 21:2131–2142

    PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2002) Vestibuloocular reflex signal modulation during voluntary and passive head movements. J Neurophysiol 87:2337–2357

    PubMed  Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: Neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111

    Article  PubMed  CAS  Google Scholar 

  • Sanders MC, Chang NN, Hiss MM, Uchanski RM, Hullar TE (2011) Temporal binding of auditory and rotational stimuli. Exp Brain Res 210:539–547

    Article  PubMed  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, McCloskey DI (1991) Illusions of head and visual target displacement induced by vibration of neck muscles. Brain 114:755–759

    Article  PubMed  Google Scholar 

  • Vatakis A, Navarra J, Soto-Faraco S, Spence C (2008) Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. Exp Brain Res 185:521–529

    Article  PubMed  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Watson TL, Krekelberg B (2009) The relationship between saccadic suppression and perceptual stability. Curr Biol 19:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Williams SR, Shenasa J, Chapman CE (1998) Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location. J Neurophysiol 79:947–963

    PubMed  CAS  Google Scholar 

  • Winter R, Harrar V, Gozdzik M, Harris LR (2008) The relative timing of active and passive touch. Brain Res 1242:54–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). MB-C was supported by a PGS-D3 NSERC Scholarship and a Canadian Institutes of Health Research Vision Health Science Training Grant. Our thanks go to Jeff Sanderson who helped conduct experiments and Loes Van Dam for scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Barnett-Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett-Cowan, M., Harris, L.R. Temporal processing of active and passive head movement. Exp Brain Res 214, 27–35 (2011). https://doi.org/10.1007/s00221-011-2802-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2802-0

Keywords

Navigation