, Volume 198, Issue 2-3, pp 425-437,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 05 May 2009

The effect of spatial–temporal audiovisual disparities on saccades in a complex scene

Abstract

In a previous study we quantified the effect of multisensory integration on the latency and accuracy of saccadic eye movements toward spatially aligned audiovisual (AV) stimuli within a rich AV-background (Corneil et al. in J Neurophysiol 88:438–454, 2002). In those experiments both stimulus modalities belonged to the same object, and subjects were instructed to foveate that source, irrespective of modality. Under natural conditions, however, subjects have no prior knowledge as to whether visual and auditory events originated from the same, or from different objects in space and time. In the present experiments we included these possibilities by introducing various spatial and temporal disparities between the visual and auditory events within the AV-background. Subjects had to orient fast and accurately to the visual target, thereby ignoring the auditory distractor. We show that this task belies a dichotomy, as it was quite difficult to produce fast responses (<250 ms) that were not aurally driven. Subjects therefore made many erroneous saccades. Interestingly, for the spatially aligned events the inability to ignore auditory stimuli produced shorter reaction times, but also more accurate responses than for the unisensory target conditions. These findings, which demonstrate effective multisensory integration, are similar to the previous study, and the same multisensory integration rules are applied (Corneil et al. in J Neurophysiol 88:438–454, 2002). In contrast, with increasing spatial disparity, integration gradually broke down, as the subjects’ responses became bistable: saccades were directed either to the auditory (fast responses), or to the visual stimulus (late responses). Interestingly, also in this case responses were faster and more accurate than to the respective unisensory stimuli.