, Volume 181, Issue 1, pp 49-67
Date: 06 Mar 2007

Threshold position control of arm movement with anticipatory increase in grip force

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The grip force holding an object between fingers usually increases before or simultaneously with arm movement thus preventing the object from sliding. We experimentally analyzed and simulated this anticipatory behavior based on the following notions. (1) To move the arm to a new position, the nervous system shifts the threshold position at which arm muscles begin to be recruited. Deviated from their activation thresholds, arm muscles generate activity and forces that tend to minimize this deviation by bringing the arm to a new position. (2) To produce a grip force, with or without arm motion, the nervous system changes the threshold configuration of the hand. This process defines a threshold (referent) aperture (Ra) of appropriate fingers. The actual aperture (Qa) is constrained by the size of the object held between the fingers whereas, in referent position Ra, the fingers virtually penetrate the object. Deviated by the object from their thresholds of activation, hand muscles generate activity and grip forces in proportion to the gap between the Qa and Ra. Thus, grip force emerges since the object prevents the fingers from reaching the referent position. (3) From previous experiences, the system knows that objects tend to slide off the fingers when arm movements are made and, to prevent sliding, it starts narrowing the referent aperture simultaneously with or somewhat before the onset of changes in the referent arm position. (4) The interaction between the fingers and the object is accomplished via the elastic pads on the tips of fingers. The pads are compressed not only due to the grip force but also due to the tangential inertial force (“load”) acting from the object on the pads along the arm trajectory. Compressed by the load force, the pads move back and forth in the gap between the finger bones and object, thus inevitably changing the normal component of the grip force, in synchrony with and in proportion to the load force. Based on these notions, we simulated experimental elbow movements and grip forces when subjects rapidly changed the elbow angle while holding an object between the index finger and the thumb. It is concluded that the anticipatory increase in the grip force with or without correlation with the tangential load during arm motion can be explained in neurophysiological and biomechanical terms without relying on programming of grip force based on an internal model.