Communications in Mathematical Physics

, Volume 201, Issue 2, pp 445–460

On the Stability of the Relativistic Electron-Positron Field

Authors

  • Volker Bach
    • Fachbereich Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany.¶E-mail: bach@math.tu-berlin.de
  • Jean-Marie Barbaroux
    • Lehrstuhl für Mathematik I, Universität Regensburg, D-93040 Regensburg, Germany.¶E-mail: jean-marie.barbaroux@mathematik.uni-regensburg.de;¶heinz.siedentop@mathematik.uni-regensburg.de
  • Bernard Helffer
    • Département de Mathématiques, Bâtiment 425, Université Paris-Sud, F-91405 Orsay Cédex, France.¶E-mail: bernard.helffer@Kmath.u-psud.fr
  • Heinz Siedentop
    • Lehrstuhl für Mathematik I, Universität Regensburg, D-93040 Regensburg, Germany.¶E-mail: jean-marie.barbaroux@mathematik.uni-regensburg.de;¶heinz.siedentop@mathematik.uni-regensburg.de

DOI: 10.1007/s002200050562

Cite this article as:
Bach, V., Barbaroux, J., Helffer, B. et al. Comm Math Phys (1999) 201: 445. doi:10.1007/s002200050562
  • 65 Views

Abstract:

We study the energy of relativistic electrons and positrons interacting through the second quantized Coulomb interaction and a self-generated magnetic field. As states we allow generalized Hartree–Fock states in the Fock space. Our main result is the assertion of positivity of the energy, if the atomic numbers and the fine structure constant are not too big. We also discuss the dependence of the result on the dressing of the electrons (choice of subspaces defining the electrons).

Download to read the full article text

Copyright information

© Springer-Verlag Berlin Heidelberg 1999