, Volume 209, Issue 3, pp 633-670

Albanese Maps and Off Diagonal Long Time Asymptotics for the Heat Kernel

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We discuss long time asymptotic behaviors of the heat kernel on a non-compact Riemannian manifold which admits a discontinuous free action of an abelian isometry group with a compact quotient. A local central limit theorem and the asymptotic power series expansion for the heat kernel as the time parameter goes to infinity are established by employing perturbation arguments on eigenvalues and eigenfunctions of twisted Laplacians. Our ideas and techniques are motivated partly by analogy with Floque–Bloch theory on periodic Schrödinger operators. For the asymptotic expansion, we make careful use of the classical Laplace method. In the course of a discussion, we observe that the notion of Albanese maps associated with the abelian group action is closely related to the asymptotics. A similar idea is available for asymptotics of the transition probability of a random walk on a lattice graph. The results obtained in the present paper refine our previous ones [4]. In the asymptotics, the Euclidean distance associated with the standard realization of the lattice graph, which we call the Albanese distance, plays a crucial role.

Received: 20 September 1998 / Accepted: 19 August 1999