Skip to main content
Log in

On Perturbations of the Schwarzschild Anti-De Sitter Spaces of Positive Mass

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we prove the Penrose inequality for metrics that are small perturbations of the Schwarzschild anti-de Sitter metrics of positive mass. We use the existence of a global foliation by weakly stable constant mean curvature spheres and the monotonicity of the Hawking mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Thesis, Stanford University (1997)

  2. Bray H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Bray, H., Chruściel, P.: The Penrose inequality. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 39–70. Birkhäuser, Basel (2004)

  4. Brendle S., Chodosh O.: A volume comparison theorem for asymptotically hyperbolic manifolds. Commun. Math. Phys. 332(2), 839–846 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Chodosh, O.: Large isoperimetric regions in asymptotically hyperbolic manifolds. arXiv:1403.6108

  6. Chruściel P., Herzlich M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003)

    Article  Google Scholar 

  7. Corvino J., Gerek A., Greenberg M., Krummel B.: On isoperimetric surfaces in general relativity. Pac. J. Math. 231(1), 63–84 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahl M., Gicquad R., Sakovich A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré 14, 1135–1168 (2013)

    Article  ADS  MATH  Google Scholar 

  9. Figueras, P., Murata, K., Reall, H.S.: Black hole instabilities and local Penrose inequalities. Class. Quantum Gravity 28, 225030 (30pp) (2011)

  10. Geroch R.: Energy extraction. Ann. N. Y. Acad. Sci. 224, 108–117 (1973)

    Article  ADS  Google Scholar 

  11. Girão, F., de Lima, L.L.: Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces. arXiv:1201.4991

  12. Girão, F., de Lima, L.L.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. arXiv:1209.0438

  13. Hollands S., Wald R.M.: Stability of black holes and black branes. Commun. Math. Phys. 321(3), 629–680 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Huisken G., Yau S.T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124, 281–311 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Lee, D., Neves, A.: The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass. arXiv:1310.3002

  17. Mars, M.: Present status of the Penrose inequality. Class. Quantum Gravity 26(19), 193001, 59 pp. (2009)

  18. Maximo D., Nunes I.: Hawking mass and local rigidity of minimal two-spheres in three-manifolds. Commun. Anal. Geom. 21(2), 409–432 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mazzeo R., Pacard F.: Constant curvature foliations in asymptotically hyperbolic spaces. Rev. Mat. Iberoam. 27(1), 303–333 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Neves A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 191–229 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. Geom. Funct. Anal. 19(3), 910–942 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Neves A., Tian G.: Existence and uniqueness of constant mean curvature foliation of asymptotically hyperbolic 3-manifolds. II. J. Reine Angew. Math. 641, 69–93 (2010)

    MATH  MathSciNet  Google Scholar 

  23. Rigger R.: The foliation of asymptotically hyperbolic manifolds by surfaces of constant mean curvature (including the evolution equations and estimates). Manuscr. Math. 113, 403–421 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas C. Ambrozio.

Additional information

Communicated by P. T. Chruściel

The author was supported by FAPERJ and CNPq-Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrozio, L.C. On Perturbations of the Schwarzschild Anti-De Sitter Spaces of Positive Mass. Commun. Math. Phys. 337, 767–783 (2015). https://doi.org/10.1007/s00220-015-2360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2360-6

Keywords

Navigation