Skip to main content
Log in

Recursive Construction of Operator Product Expansion Coefficients

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive a novel formula for the derivative of operator product expansion (OPE) coefficients with respect to a coupling constant. The formula involves just the OPE coefficients themselves but no further input, and is in this sense self-consistent. Furthermore, unlike other formal identities of this general nature in quantum field theory (such as the formal expression for the Lagrangian perturbation of a correlation function), our formula requires no further UV-renormalization, i.e., it is completely well-defined from the start. This feature is a result of a cancelation of UV- and IR-divergences between various terms in our identity. Our proof, and an analysis of the features of the identity, is given for the example of massive, Euclidean \({\varphi^4}\) theory in 4 dimensional Euclidean space. It relies on the renormalization group flow equation method and is valid to arbitrary, but finite orders in perturbation theory. The final formula, however, makes neither explicit reference to the renormalization group flow, nor to perturbation theory, and we conjecture that it also holds non-perturbatively. Our identity can be applied constructively because it gives a novel recursive algorithm for the computation of OPE coefficients to arbitrary (finite) perturbation order in terms of the zeroth order coefficients corresponding to the underlying free field theory, which in turn are trivial to obtain. We briefly illustrate the relation of this method to more standard methods for computing the OPE in some simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson K.: Non-Lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zimmermann W.: Normal products and the short distance expansion in the perturbation theory of renormalizable interactions. Ann. Phys. 77, 570–601 (1973)

    Article  ADS  Google Scholar 

  3. Hollands S., Kopper C.: The operator product expansion converges in perturbative field theory. Commun. Math. Phys. 313, 257–290 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Holland J., Hollands S.: Operator product expansion algebra. J. Math. Phys. 54, 072302 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Holland, J.: Properties of the operator product expansion in quantum field theory. PhD Thesis, Cardiff University (2013)

  6. Hollands S.: Quantum field theory in terms of consistency conditions I: general framework, and perturbation theory via Hochschild cohomology. SIGMA 5, 090 (2009)

    MathSciNet  Google Scholar 

  7. Hollands S., Wald R.M.: Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Wald R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago Lectures in Physics. University of Chicago Press, Chicago (1994)

    Google Scholar 

  9. Frenkel I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics. Academic Press Inc, New York (1989)

    Google Scholar 

  10. Lepowsky J., Li H.: Introduction to Vertex Operator Algebras and Their Representations. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  11. Huang Y.-Z.: Two-Dimensional Conformal Geometry and Vertex Operator Algebras. Progress in Mathematics, vol. 148. Birkhäuser Boston Inc., Boston (1997)

    Google Scholar 

  12. Borcherds R.E.: Vertex algebras, Kac–Moody algebras, and the monster. Proc. Nat. Acad. Sci. 83, 3068–3071 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  13. Collins J.C., Collins J.J.C.: Renormalization. Cambridge University Press, London (1986)

    Google Scholar 

  14. Weinberg S.: The Quantum Theory of Fields. Modern applications, vol. 2. Cambridge University Press, London (1996)

    Book  Google Scholar 

  15. Guida R., Magnoli N.: All order I.R. finite expansion for short distance behavior of massless theories perturbed by a relevant operator. Nucl. Phys. B 471, 361–385 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Polchinski J.: Renormalization and effective Lagrangians. Nucl. Phys. B 231, 269–295 (1984)

    Article  ADS  Google Scholar 

  17. Wilson K.G.: Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3174–3183 (1971)

    Article  ADS  MATH  Google Scholar 

  18. Wilson K.G.: Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior. Phys. Rev. B 4, 3184–3205 (1971)

    Article  ADS  MATH  Google Scholar 

  19. Wegner F.J., Houghton A.: Renormalization group equation for critical phenomena. Phys. Rev. A 8, 401–412 (1973)

    Article  ADS  Google Scholar 

  20. Keller, G., Kopper, C., Salmhofer, M.: Perturbative renormalization and effective Lagrangians in \({\Phi^4}\) in four-dimensions. Helv. Phys. Acta 65, 32–52 (1992)

  21. Keller G., Kopper C.: Perturbative renormalization of composite operators via flow equations. 1. Commun. Math. Phys. 148, 445–468 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Wetterich C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90–94 (1993)

    Article  ADS  Google Scholar 

  23. Müller V.F.: Perturbative renormalization by flow equations. Rev. Math. Phys. 15, 491 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kopper, C.: Renormierungstheorie mit Flussgleichungen, Shaker (1998)

  25. Kopper C., Müller V.F., Reisz T.: Temperature independent renormalization of finite temperature field theory. Ann. Henri Poincare 2, 387–402 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Glimm J., Jaffe A.: Quantum Physics: A Functional Integral Point of View. Springer, Berlin (1987)

    Book  Google Scholar 

  27. Keller G., Kopper C.: Perturbative renormalization of composite operators via flow equations. 2. Short distance expansion. Commun. Math. Phys. 153, 245–276 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Lam Y.M.P.: Perturbation Lagrangian theory for scalar Fields-Ward-Takahashi identity and current algebra. Phys. Rev. D 6, 2145–2161 (1972)

    Article  ADS  Google Scholar 

  29. Lam Y.M.P.: Equivalence theorem on Bogoliubov–Parasiuk–Hepp–Zimmermann-renormalized Lagrangian field theories. Phys. Rev. D 7, 2943–2949 (1973)

    Article  ADS  Google Scholar 

  30. Lowenstein J.H.: Differential vertex operations in Lagrangian field theory. Commun. Math. Phys. 24, 1–21 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Zimmermann, W.: Local operator products and renormaliztion in quantum field theory. In: Deser, S. (ed.) Lectures on Elementary Particles and Quantum Field Theory, pp.395–589. Cambridge, Mass (1970)

  32. Lowenstein J.H.: Normal product quantization of currents in Lagrangian field theory. Phys. Rev. D 4, 2281–2290 (1971)

    Article  ADS  Google Scholar 

  33. Olbermann, H.: Quantum field theory via vertex algebras. PhD Thesis, Cardiff University (2010)

  34. Kopper C.: On the local Borel transform of perturbation theory. Commun. Math. Phys. 295, 669–699 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Stein E.M., Murphy T.S.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 3. Princeton University Press, New Jersery (1993)

    Google Scholar 

  36. Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65–222 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Holland.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, J., Hollands, S. Recursive Construction of Operator Product Expansion Coefficients. Commun. Math. Phys. 336, 1555–1606 (2015). https://doi.org/10.1007/s00220-014-2274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2274-8

Keywords

Navigation