Skip to main content
Log in

Radiation Fields on Schwarzschild Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we define the radiation field for the wave equation on the Schwarzschild black hole spacetime. In this context it has two components: the rescaled restriction of the time derivative of a solution to null infinity and to the event horizon. In the process, we establish some regularity properties of solutions of the wave equation on the spacetime. In particular, we prove that the regularity of the solution across the event horizon and across null infinity is determined by the regularity and decay rate of the initial data at the event horizon and at infinity. We also show that the radiation field is unitary with respect to the conserved energy and prove support theorems for each piece of the radiation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachelot A.: Asymptotic completeness for the Klein–Gordon equation on the Schwarzschild metric. Ann. Inst. Henri Poincaré Phys. Théor 61(4), 411–441 (1994)

    MATH  MathSciNet  Google Scholar 

  2. Blue P., Sterbenz J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Comm. Math. Phys. 268(2), 481–504 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Blue P., Soffer A.: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256(1), 1–90 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baskin, D., Sá Barreto, A.: Radiation fields for semilinear wave equations. Trans. Am. Math. Soc. (2012, Preprint). ArXiv:1208.2743

  5. Baskin, D., Vasy, A., Wunsch, J.: Asymptotics of radiation fields on asymptotically Minkowski spaces. (2012, Preprint). ArXiv:1212.5141

  6. Dimock J.: Scattering for the wave equation on the Schwarzschild metric. Gen. Relativ. Gravit. 17(4), 353–369 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Donninger, R., Krieger, J.: A vector field method on the distorted Fourier side and decay for wave equations with potentials (2013, Preprint). ArXiv:1307.2392

  8. Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: David, E., Igor, R., Gigliola, S., Jared, W. (eds.) Evolution Equations. Clay Mathematics Proceedings, vol. 17, pp. 97–205. American Mathematical Society, Clay Mathematics Institute, Providence (2013)

  10. Donninger R., Schlag W., Soffer A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309(1), 51–86 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Friedlander F.G.: Radiation fields and hyperbolic scattering theory. Math. Proc. Camb. Philos. Soc. 88(3), 483–515 (1980)

    Article  MATH  Google Scholar 

  12. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1. Cambridge University Press, London (1973)

  13. Helgason S.: The Radon Transform, 2nd edn. Progress in Mathematics, vol. 5. Birkhäuser Boston Inc., Boston (1999)

    Book  Google Scholar 

  14. Lax, P.D., Phillips, R.S.: Scattering Theory. Pure and Applied Mathematics, vol. 26. Academic Press Inc., Boston, MA, second edition, 1989. With appendices by Cathleen S. Morawetz and Georg Schmidt

  15. Luk J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11(5), 805–880 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Melrose R.B.: The Atiyah–Patodi–Singer Index Theorem. Research Notes in Mathematics, vol. 4. A K Peters Ltd., Wellesley (1993)

    Google Scholar 

  17. Marzuola J., Metcalfe J., Tataru D., Tohaneanu M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293(1), 37–83 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Metcalfe J., Tataru D., Tohaneanu M.: Price’s law on nonstationary space-times. Adv. Math. 230(3), 995–1028 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sá Barreto A.: Radiation fields on asymptotically Euclidean manifolds. Commun. Partial Differ. Equ. 28(9-10), 1661–1673 (2003)

    Article  MATH  Google Scholar 

  20. Sá Barreto A.: Radiation fields, scattering, and inverse scattering on asymptotically hyperbolic manifolds. Duke Math. J. 129(3), 407–480 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sá Barreto A.: A support theorem for the radiation fields on asymptotically Euclidean manifolds. Math. Res. Lett. 15(5), 973–991 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sá Barreto A., Wunsch J.: The radiation field is a Fourier integral operator. Ann. Inst. Fourier (Grenoble) 55(1), 213–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tataru D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), 361–401 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, F.: Radiation field for Einstein vacuum equations with spacial dimension n ≥  4. (2013, Preprint). ArXiv:1304.0407

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Baskin.

Additional information

Communicated by P. T. Chruściel

The authors are grateful to Antônio Sá Barreto for pointing out the simple proof of the 1 + 1-dimensional support theorem. D.B. was supported by NSF postdoctoral fellowship DMS-1103436.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskin, D., Wang, F. Radiation Fields on Schwarzschild Spacetime. Commun. Math. Phys. 331, 477–506 (2014). https://doi.org/10.1007/s00220-014-2047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2047-4

Keywords

Navigation