Skip to main content
Log in

Non-Commutative Painlevé Equations and Hermite-Type Matrix Orthogonal Polynomials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study double integral representations of Christoffel–Darboux kernels associated with two examples of Hermite-type matrix orthogonal polynomials. We show that the Fredholm determinants connected with these kernels are related through the Its–Izergin–Korepin–Slavnov (IIKS) theory with a certain Riemann-Hilbert problem. Using this Riemann-Hilbert problem we obtain a Lax pair whose compatibility conditions lead to a non-commutative version of the Painlevé IV differential equation for each family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler M., Ferrari P.L., van Moerbeke P.: Airy processes with wanderers and new universality classes. Ann. Probab. 38(2), 714–769 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aratyn, H., Gomes, J.F., Zimerman, A.H.: On the symmetric formulation of the Painlevé IV equation. http://arxiv.org/abs/00909.3532v1 [math-ph], 2009

  3. Aratyn, H., Gomes, J.F., Zimerman, A.H.: Darboux-Backlund transformations and rational solutions of the Painlevé IV equation. In: Nonlinear and modern mathematical physics, AIP Conf. Proc., 1212, Melville, NY: Amer. Inst. Phys., 2010, pp. 146–153

  4. Bertola M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bertola M., Cafasso M.: The transition between the gap probabilities from the Pearcey to the Airy process-a Riemann-Hilbert approach. Int. Math. Res. Not. 2012(7), 519–1568 (2012)

    MathSciNet  Google Scholar 

  6. Bertola M., Cafasso M.: Fredholm determinants and pole-free solutions to the noncommutative Painlevé II equation. Commun. Math. Phys. 309, 793–833 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Damanik D., Pushnitski A., Simon B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1–85 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Deift, P.A.: Integrable Operators. In: Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, 189, Providence, RI: Amer. Math. Soc., 1999, pp. 69–84

  9. Durán A.J.: Matrix inner product having a matrix symmetric second order differential operator. Rocky Mt. J. Math. 27, 585–600 (1997)

    Article  MATH  Google Scholar 

  10. Durán A.J., Grünbaum F.A.: Orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 10, 461–484 (2004)

    Article  Google Scholar 

  11. Durán A.J., Grünbaum F.A.: Structural formulas for orthogonal matrix polynomials satisfying second-order differential equations. Constr. Approx. 22(2), 255–271 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grünbaum F.A., Pacharoni I., Tirao J.: Matrix valued spherical functions associated to the complex projective plane. J. Funct. Anal. 188(2), 350–441 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grünbaum, F.A., de la Iglesia, M.D., Martinez-Finkelshtein, A.: Properties of matrix orthogonal polynomials via their Riemann-Hilbert characterization. SIGMA 7, 098, (2011), 31 pages

    Google Scholar 

  14. de la Iglesia M.D.: Some examples of matrix-valued orthogonal functions having a differential and an integral operator as eigenfunctions. J. Approx. Theory 163(5), 663–687 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Its, A.R., Izergin, A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. In: Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory. Int. J. Mod. phys. B V. 4, 1003–1037, 1990

  16. Johansson, K.: Random matrices and determinantal processes, In: Lectures given at the summer school on Mathematical statistical mechanics at École de Physique, Les Houches, vol. 83, Amsterdam: Elsevier, 2006 see http://arxiv.org/abs/math-ph/0510038v1 [math-ph], 2005

  17. Mehta, M.L.: Random matrices. Third edition. Pure and Applied Mathematics (Amsterdam), vol. 142. Amsterdam: Elsevier/Academic Press, 2004

  18. Palmer J.: Zeros of the Jimbo, Miwa, Ueno tau function. J. Math. Phys. 40(12), 6638–6681 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Retakh, V., Rubtsov, V.: Noncommutative Toda Chains, Hankel Quasideterminants and Painlevé II Equation. J. Phys. A: Math. Theor. 43(50), 505204, (2010) 13 pp

    Google Scholar 

  20. Simon, B.: Trace ideals and their applications. Second edition. Mathematical Surveys and Monographs, vol. 120. Providence, RI: Amer. Math. Soc., 2005

  21. Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Tracy C.A., Widom H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163(1), 33–72 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Wasow, W.: Asymptotic expansions for ordinary differential equations. New York: Dover, 1987

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel D. de la Iglesia.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cafasso, M., de la Iglesia, M.D. Non-Commutative Painlevé Equations and Hermite-Type Matrix Orthogonal Polynomials. Commun. Math. Phys. 326, 559–583 (2014). https://doi.org/10.1007/s00220-013-1853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1853-4

Keywords

Navigation