Skip to main content
Log in

Representations of Super Yang-Mills Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149–158, 2002), and in fact they appear as a “background independent” formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras \({{\rm {Cliff}}_{q}(k) \otimes A_{p}(k)}\), for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry M., Lemaire J.-M.: Zero divisors in enveloping algebras of graded Lie algebras. J. Pure Appl. Alg. 38(2–3), 159–166 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin M., Zhang J.J.: Noncommutative projective schemes. Adv. Math. 109(2), 228–287 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bavula V., Bekkert V.: Indecomposable representations of generalized Weyl algebras. Comm. Alg. 28(11), 5067–5100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bell A.D., Musson I.M.: Primitive factors of enveloping algebras of nilpotent Lie superalgebras. J. London Math. Soc. (2) 42(3), 401–408 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger R., Ginzburg V.: Higher symplectic re ection algebras and non-homogeneous N-Koszul property. J. Alg. 304(1), 577–601 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger R., Marconnet N.: Koszul and Gorenstein properties for homogeneous algebras. Alg. Rep. Th. 9(1), 67–97 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger R., Taillefer R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncom. Geom. 1(2), 241–270 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergman G.M.: The diamond lemma for ring theory. Adv. in Math. 29(2), 178–218 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  9. Cohen M., Montgomery S.: Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282(1), 237–258 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Connes A., Dubois-Violette M.: Yang-Mills algebra. Lett. Math. Phys. 61(2), 149–158 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connes, A., Dubois-Violette, M.: Yang-Mills and some related algebras. In: Rigorous quantum field theory, Progr. Math., Vol. 251, Basel: Birkhäuser, 2007, pp. 65–78

  12. Deligne, P., Freed, D.S.: Classical field theory. (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 137–225

  13. Deligne, P., Freed, D.S.: Supersolutions. (Princeton, NJ, 1996/1997), Providence, RI: Amer. Math. Soc., 1999, pp. 227–355

  14. Douglas M.R., Nekrasov N.A.: Noncommutative field theory. Rev. Mod. Phys. 73(4), 977–1029 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Ferrero M., Kishimoto K., Motose K.: On radicals of skew polynomial rings of derivation type. J. London Math. Soc. (2) 28(1), 8–16 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fröberg R.: Determination of a class of Poincaré series. Math. Scand. 37(1), 29–39 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Gordon R., Green E.L.: Graded Artin algebras. J. Algebra 76(1), 111–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hô Hai P., Kriegk B., Lorenz M.: N-homogeneous superalgebras. J. Noncom. Geom. 2(1), 1–51 (2008)

    Article  MATH  Google Scholar 

  19. Herscovich E.: The Dixmier map for nilpotent super Lie algebras. Commun. Math. Phy. 313(2), 295–328 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Herscovich E., Solotar A.: Representation theory of Yang-Mills algebras. Ann. of Math. (2) 173(2), 1043–1080 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Herscovich E., Solotar A.: Hochschild and cyclic homology of Yang-Mills algebras. J. Reine Ange. Math. 665, 73–156 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Lang, S.: Algebra. 3rd ed., Graduate Texts in Mathematics, Vol. 211, New York: Springer-Verlag, 2002

  23. Letzter E.: Primitive ideals in finite extensions of Noetherian rings. J. London Math. Soc. (2) 39(3), 427–435 (1989)

    Article  MathSciNet  Google Scholar 

  24. Mori I., Minamoto H.: The structure of AS-Gorenstein algebras. Adv. Math. 226(5), 4061–4095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Movshev, M., Schwarz, A.: Algebraic structure of Yang-Mills theory. In: The unity of mathematics, Progr. Math., Vol. 244, Boston, MA: Birkhäuser Boston, 2006, pp. 473–523; Movshev, M.: Yang-Mills theories in dimesiions 3, 4, 6, 10 and Bar-duality. http://arxiv.org/abs/hep-th/0503165v2, 2005

  26. Musson, I.M., Pinczon, G., Ushirobira, R.: Hochschild cohomology and deformations of Clifford-Weyl algebras, SIGMA Symmetry Integrability Geom. Methods Appl. 5, Paper 028, 27 (2009)

    Google Scholar 

  27. Piontkovski D.: Coherent algebras and noncommutative projective lines. J. Alg. 319(8), 3280–3290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rotman, J.J.: An introduction to homological algebra. 2nd ed., Universitext, New York: Springer, 2009

  29. Tanaka J.: On homology and cohomology of Lie superalgebras with coefficients in their finite-dimensional representations. Proc. Japan Acad. Ser. A Math. Sci. 71(3), 51–53 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge: Cambridge University Press, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estanislao Herscovich.

Additional information

Communicated by A. Connes

The author is an Alexander von Humboldt fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herscovich, E. Representations of Super Yang-Mills Algebras. Commun. Math. Phys. 320, 783–820 (2013). https://doi.org/10.1007/s00220-012-1648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1648-z

Keywords

Navigation