Skip to main content
Log in

Fourth Moment Theorem and q-Brownian Chaos

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In 2005, Nualart and Peccati (Ann Probab 33(1):177–193, 2005) proved the so-called Fourth Moment Theorem asserting that, for a sequence of normalized multiple Wiener-Itô integrals to converge to the standard Gaussian law, it is necessary and sufficient that its fourth moment tends to 3. A few years later, Kemp et al. (Ann Probab 40(4):1577–1635, 2011) extended this theorem to a sequence of normalized multiple Wigner integrals, in the context of the free Brownian motion. The q-Brownian motion, \({q \in (-1, 1]}\), introduced by the physicists Frisch and Bourret (J Math Phys 11:364–390, 1970) in 1970 and mathematically studied by Bożejko and Speicher (Commun Math Phys 137:519–531, 1991), interpolates between the classical Brownian motion (q = 1) and the free Brownian motion (q = 0), and is one of the nicest examples of non-commutative processes. The question we shall solve in this paper is the following: what does the Fourth Moment Theorem become when dealing with a q-Brownian motion?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biane P., Speicher R.: Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Prob. Th. Rel. Fields 112, 373–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bożejko M., Speicher R.: An example of a generalized Brownian motion. Commun. Math. Phys. 137, 519–531 (1991)

    Article  ADS  MATH  Google Scholar 

  3. Bożejko M., Speicher R.: Interpolations between bosonic and fermionic relations given by generalized Brownian motions. Math. Z. 222, 135–160 (1996)

    Article  MathSciNet  Google Scholar 

  4. Breuer P., Major P.: Central limit theorems for non-linear functionals of Gaussian fields. J. Mult. Anal. 13, 425–441 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Donati-Martin C.: Stochastic integration with respect to q-Brownian motion. Prob. Th. Rel. Fields 125, 77–95 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frisch U., Bourret R.: Parastochastics. J. Math. Phys. 11, 364–390 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Greenberg O.W.: Particles with small violations of Fermi or Bose statistics. Phys. Rev. D 43, 4111–4120 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ismail M.E.H., Stanton D., Viennot G.: The combinatorics of q-Hermite polynomials and the Askey-Wilson integral. Eur. J. Comb. 8(4), 379–392 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Kemp T., Nourdin I., Peccati G., Speicher R.: Wigner chaos and the fourth moment. Ann. Probab. 40(4), 1577–1635 (2011)

    Article  MathSciNet  Google Scholar 

  10. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge: Cambridge University Press, 2006

  11. Nourdin, I., Peccati, G.: Normal Approximations Using Malliavin Calculus: from Stein’s Method to Universality. Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2012

  12. Nualart, D.: The Malliavin calculus and related topics. Berlin: Springer Verlag, Second edition, 2006

  13. Nualart D., Peccati G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Śniady P.: Gaussian random matrix models for q-deformed Gaussian variables. Commun. Math. Phys. 216, 515–537 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Voiculescu D.V.: Limit laws for random matrices and free product. Invent. Math. 104, 201–220 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Deya.

Additional information

Communicated by Y. Kawahigashi

Supported in part by the two following (french) ANR grants: ‘Exploration des Chemins Rugueux’ [ANR-09-BLAN-0114] and ‘Malliavin, Stein and Stochastic Equations with Irregular Coefficients’ [ANR-10-BLAN-0121].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deya, A., Noreddine, S. & Nourdin, I. Fourth Moment Theorem and q-Brownian Chaos. Commun. Math. Phys. 321, 113–134 (2013). https://doi.org/10.1007/s00220-012-1631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1631-8

Keywords

Navigation