Skip to main content
Log in

Axiomatic Quantum Field Theory in Curved Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features—such as Poincaré invariance and the existence of a preferred vacuum state—that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globally hyperbolic curved spacetimes, it is essential that the theory be formulated in an entirely local and covariant manner, without assuming the presence of a preferred state. We propose a new framework for quantum field theory, in which the existence of an Operator Product Expansion (OPE) is elevated to a fundamental status, and, in essence, all of the properties of the quantum field theory are determined by its OPE. We provide general axioms for the OPE coefficients of a quantum field theory. These include a local and covariance assumption (implying that the quantum field theory is constructed in a local and covariant manner from the spacetime metric and other background structure, such as time and space orientations), a microlocal spectrum condition, an “associativity” condition, and the requirement that the coefficient of the identity in the OPE of the product of a field with its adjoint have positive scaling degree. We prove curved spacetime versions of the spin-statistics theorem and the PCT theorem. Some potentially significant further implications of our new viewpoint on quantum field theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Axelrod S., Singer I.M.: Chern-Simons perturbation theory. 2. J. Diff. Geom. 39, 173 (1994)

    MATH  MathSciNet  Google Scholar 

  2. Borcherds R.E.: Vertex algebras, Kac-Moody algebras, and the monster. Proc. Nat. Acad. Sci. 83, 3068 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bostelmann H.: Operator product expansions as a consequence of phase space properties. J. Math. Phys. 46, 082304 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bostelmann H.: Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 46, 052301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials on curved spacetimes. Commun. Math. Phys. 180, 633–652 (1996)

    Article  MATH  ADS  Google Scholar 

  6. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: A new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003); see also K. Fredenhagen,: Locally covariant quantum field theory. In: Proc. Int. Conf., Math. Phys. (Lisbon, Portugal, 2003), Singapore, World Scientific, 2005

  8. Fewster, C.J.: Energy Inequalities in Quantum Field Theory. Proceedings of XIVth International Congress on Mathematical Physics, ed. J.-C. Zambrini, Singapore: World Scientific, 2005, p. 559

  9. Fredenhagen, K.: Locally Covariant Quantum Field Theory. Proceedings of XIVth International Congress on Mathematical Physics, ed. J.-C. Zambrini, Singapore: Worl Scientific, 2003, p. 29

  10. Fredenhagen, K., Hertel, J.: Local Algebras Of Observables And Point - Like Localized Fields. Commun. Math. Phys. 80, 555 (1981); Fredenhagen, K., Jorss, M.: Conformal Haag-Kastler nets, point - like localized fields and the existence of operator product expansions. Commun. Math. Phys. 176, 541 (1996)

    Google Scholar 

  11. Frenkel I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Academic Press, Boston (1988)

    MATH  Google Scholar 

  12. Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. 136, 243 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  13. Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. Math. 139, 183 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Hollands S.: The operator product expansion for perturbative quantum field theory in curved spacetime. Commun. Math. Phys. 273, 1 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Hollands S.: A general PCT theorem for the operator product expansion in curved spacetime. Commun. Math. Phys. 244, 209 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Hollands, S., Kopper, C.: In progress

  18. Hollands, S., Wald, R.M.: In progress

  19. Hollands S., Wald R.M.: Local wick polynomials and time ordered products of quantum fields in curved space. Commun. Math. Phys. 223, 289–326 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Hollands S., Wald R.M.: Existence of local covariant time-ordered-products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309–345 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Hollands, S.: Quantum field theory in terms of consistency conditions I: General framework, and perturbation theory via Hochschild cohomology. http://arxiv.org/abs/0802.2198v2[hep-th], 2008

  22. Hörmander L.: The Analysis of Linear Partial Differential Operators I. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  23. Kac, V.: Vertex Algebras for Beginners. Univ. Lect. Series 10, Providence, RI: Amer. Math. Soc., 1996

  24. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton Series in Physics, Princeton, NJ: Princeton Univ. Pr., 1991

  26. Schroer B., Swieca J.A., Volkel A.H.: Global operator expansions in conformally invariant relativistic quantum field theory. Phys. Rev. D 11, 1509 (1975)

    Article  ADS  Google Scholar 

  27. Streater R.F., Wightman A.A.: PCT, Spin and Statistics and All That. Benjamin, New York (1964)

    MATH  Google Scholar 

  28. Wald R.M.: Quantum Field Theory on Curved Spacetimes and Black Hole Thermodynamics. The University of Chicago Press, Chicago, IL (1990)

    Google Scholar 

  29. Wilson K.G.: Nonlagrangian models of current algebra. Phys. Rev. 179, 1499 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  30. Bernard, C., Duncan, A., LoSecco, J., Weinberg, S.: Exact spectral-function sum rules. Phys. Rev. D 12, 792–804 (1975), See the Appendix

    Google Scholar 

  31. Zimmermann, W.: Normal Products And The Short Distance Expansion In The Perturbation Theory Of Renormalizable Interactions. Annals Phys. 77, 570 (1973); seealso, Lect. Notes Phys. 558, Berlin Heidelberg-NewYork: Springer, 2008, p. 278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hollands.

Additional information

Communicated by G. W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollands, S., Wald, R.M. Axiomatic Quantum Field Theory in Curved Spacetime. Commun. Math. Phys. 293, 85–125 (2010). https://doi.org/10.1007/s00220-009-0880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0880-7

Keywords

Navigation