Communications in Mathematical Physics

, Volume 279, Issue 3, pp 637–668

On the Renormalized Volume of Hyperbolic 3-Manifolds

Article

DOI: 10.1007/s00220-008-0423-7

Cite this article as:
Krasnov, K. & Schlenker, JM. Commun. Math. Phys. (2008) 279: 637. doi:10.1007/s00220-008-0423-7

Abstract

The renormalized volume of hyperbolic manifolds is a quantity motivated by the AdS/CFT correspondence of string theory and computed via a certain regularization procedure. The main aim of the present paper is to elucidate its geometrical meaning. We use another regularization procedure based on surfaces equidistant to a given convex surface ∂N. The renormalized volume computed via this procedure is equal to what we call the W-volume of the convex region N given by the usual volume of N minus the quarter of the integral of the mean curvature over ∂N. The W-volume satisfies some remarkable properties. First, this quantity is self-dual in the sense explained in the paper. Second, it verifies some simple variational formulas analogous to the classical geometrical Schläfli identities. These variational formulas are invariant under a certain transformation that replaces the data at ∂N by those at infinity of M. We use the variational formulas in terms of the data at infinity to give a simple geometrical proof of results of Takhtajan et al on the Kähler potential on various moduli spaces.

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of NottinghamNottinghamUK
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Institut de Mathématiques, UMR CNRS 5219Université Toulouse IIIToulouse Cedex 9France

Personalised recommendations