1.

Akhmediev N. and Ankiewicz A. (1999). Partially coherent solitons on a finite background.

*Phys. Rev. Lett.* 82: 2661–2664

CrossRefADS2.

Ambrosetti A. and Colorado E. (2006). Bound and ground states of coupled nonlinear Schrödinger equations.

*Comptes Rendus Mathematique* 342(7): 453–458

MATHCrossRefMathSciNet3.

Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. Preprint

4.

Buljan H., Schwartz T., Segev M. and Soljacic M. (2004). Christoudoulides, D.: Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium.

*J. Opt. Soc. Am. B.* 21(2): 397–404

CrossRefADS5.

Busca J. and Sirakov B. (2000). Symmetry results for semilinear elliptic systems in the whole space.

*J. Diff. Eq.* 163(1): 41–56

MATHCrossRefMathSciNet6.

Busca J. and Sirakov B. (2004). Harnack type estimates for nonlinear elliptic systems and applications.

*Ann. Inst. H. Poincaré Anal. Non Lin.* 21(5): 543–590

MATHCrossRefMathSciNet7.

Christodoulides D., Eugenieva E., Coskun T., Mitchell M. and Segev M. (2001). Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media.

*Phys. Rev. E* 63: 035601

CrossRefADS8.

Coffman, C.V.: Uniqueness of the ground state solution for \({-\Delta u + u = u^3}\) and a variational characterization of other solutions. Arch. Rat. Mech. Anal. **46**, 81-95 (1972)

9.

de Figueiredo D.G. (2000). Nonlinear elliptic systems.

*Anais da Academia Brasileira de Ciências* 72(4): 453–469

MathSciNet10.

Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n}\) . Adv. Math. Studies **7A**, 209-243 (1979)

11.

Gilbarg, D., Trudinger, N.: *Elliptic Partial Differential Equations of Second Order*. 2nd edition. Berlin-Heidelberg-Newyork: Springer-Verlag,1983

12.

Hioe F.T. (1999). Solitary waves for N coupled nonlinear Schrödinger equations. Phys.

*Rev. Lett.* 82: 1152–1155

CrossRefADS13.

Kutuzov V., Petnikova V.M., Shuvalov V.V. and Vysloukh V.A. (1998). Cross-modulation coupling of incoherent soliton modes in photorefractive crystals.

*Phys. Rev. E* 57: 6056–6065

CrossRefADS14.

Kwong, M.K.: Uniqueness of positive solutions of \({-\Delta u + u = u^p}\) in \({\mathbb{R}^n}\) . Arch. Rat. Mech. Anal. **105**, 243-266 (1989)

15.

Lieb, E., Loss, M.: *Analysis*. Providence, RI: Amer. Math. Soc. 1996

16.

Lin, T.C., Wei, J.: Ground state of *N* coupled nonlinear Schrödinger equations in \({\mathbb{R}^n, N\le 3}\) . Commun. Math. Phys. **255**, 629-653 (2005), see also Erratum, to appear in Commun. Math. Phys.

17.

Lin T.C. and Wei J. (2005). Spikes in two coupled nonlinear Schrödinger equations.

*Ann. Inst. H. Poincaré, Anal. Non-Lin.* 22(4): 403–439

MATHCrossRefMathSciNet18.

Maia L., Montefusco E. and Pellacci B. (2006). Positive solutions for a weakly coupled Schrödinger system.

*J. Differ. Eqs.* 229: 743–767

MATHCrossRefMathSciNet19.

Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh. Eksp. Teor. Fiz. 65, 505–516 (1973), English translation in J. Exp. Th. Phys. **38**, 248–256 (1974)

20.

Mitchell M., Chen Z., Shih M. and Segev M. (1996). Self-trapping of partially spatially incoherent light.

*Phys. Rev. Lett.* 77: 490–493

CrossRefADS21.

Mitchell M. and Segev M. (1997). Self-trapping of incoherent white light.

*Nature (London)* 387: 880–882

CrossRefADS22.

Rabinowitz, P.: *Minimax methods in critical point theory with applications to differential equations*. CBMS Regional Conference Series in Mathematics **65**, Providence, RI:Amer. Math. Soc., 1986

23.

Willem M. (1996). Minimax methods. Springer, Berlin-Heidelberg-Newyork

24.

Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118–134 (1971), English translation in J. Exp. Th. Phys. **34**, 62–69 (1972)